Divide 14 by 6 and there is your answer with the unit of m
Ranking of de Broglie wavelengths from largest to smallest is electron > proton > helium
- De Broglie proposed that because light has both wave and particle properties, matter exhibits both wave and particle properties. This property has been explained as the dual behavior of matter.
- From his observations, de Broglie derived the relationship between the wavelength and momentum of matter. This relationship is known as de Broglie's relationship
De Broglie's relationship is given by
.....(1) , where λ is known as de Broglie wavelength and m is mass , v is velocity , h = Plank’s constant.
From equation (1) wavelength and mass has an inverse relation .
Mass of helium is 4 times the mass of the proton and proton has a greater mass than electron.
According to equation (1) , less the mass higher will be the wavelength
Hence electron having less mass have higher wavelength and then proton and then helium having large mass will have less wavelength .
Thus, order should be electron > proton > helium .
Learn about de brogile wavelength more here :
brainly.com/question/16595523
#SPJ4
Answer:
A quantity that has magnitude and direction. It's usually represented by an arrow whose direction is the same direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude
Answer:
<em>the ball travels a distance of 8.84 m</em>
Explanation:
Range: Range is defined as the horizontal distance from the point of projection to the point where the projectile hits the projection plane again.
R = (U²sin2∅)/g.............................. Equation 1
Where R = range, U = initial velocity, ∅ = angle of projection, g = acceleration due to gravity.
<em>Given: U = 10 m/s, ∅ = 60°</em>
<em>Constant: g = 9.8 m/s²</em>
Substituting these values into equation 1
R = [10²×sin(2×60)]/9.8
R = (100sin120)/9.8
R = 100×0.8660/9.8
R = 86.60/9.8
R = 8.84 m
<em>Therefore the ball travels a distance of 8.84 m</em>
If the car moves along the distance it will be 16 of the line graph where is independent of the graph