Answer:
The cost of electricity for 100 W power bulb = $ 32.85
Cost of electricity for 0.025 W fluorescent bulb = $ 8.2125
Explanation:
Cost of electricity = $ 0.18 per KW-H
Time = 5 hour per day
Bulb power = 100 W = 0.1 KW
Fluorescent bulb power = 25 W = 0.025 KW
(a) Cost of electricity for 100 W power bulb
0.1 × 5 × 365 × 0.18 = $ 32.85
(b) Cost of electricity for 0.025 W fluorescent bulb
0.025 × 5 × 365 × 0.18 = $ 8.2125
Therefore the cost of electricity for 100 W power bulb = $ 32.85
Cost of electricity for 0.025 W fluorescent bulb = $ 8.2125
The balanced reaction is as below
3A₂B + 2DC₃→ 6 AC + D₂B₃
The number that must be to the left of AC is 6
Explanation
- According to the law of mass conservation , the number of atoms in reactant side must be equal to number to the number of atoms in product side.
- Therefore the equation above is balance since it obey the law of mass conservation.
- For example there is 6 atoms of A in reactant side and 6 in product side.
Answer:
See explanation
Explanation:
Crystals can be made from methanol by recrystallizing the plant extract from methanol.
The methanol/water system is heated rapidly using a hot plate and the plant extract dissolves in the heating solution until a clear solution is obtained.
The solution is now cooled rapidly. The interior of the flask used for the re crystallization may even by scratched to assist the quick formation of crystals. Large crystals of plant compounds may be obtained using this method. This process should be carried out in a fume hood because of the toxicity of methanol.
Answer:
1. Ions are either negatively or positively charged species in which the number of electrons and protons are not equal.
2. The chemical bond that arises due to the sharing of electrons is termed a covalent bond.
3. The positively charged ions are called cations, which comprise more protons than electrons.
4. An example of a polyatomic anion is the hydroxide anion.
5. The system of assigning an unambiguous name to a compound is called nomenclature.
Answer:
1. Lysine
2. Aspartic acid
3. Serine
4. Alanine
5. Tryptophan
Explanation:
Amino acids are biomolecules that contain two functional groups and one R side chain. The two functional groups are: carboxyl group and amino group.
The α-amino acids are the amino acids in which the two functional groups and the R side chain are attached to the α-carbon of the amino acid. They are total 22 α-amino acids.
1. A basic amino acid: Lysine is a positively charged, polar basic amino acid with a lysyl side chain.
2. An acidic amino acid: Aspartic acid is a negatively charged, polar acidic amino acid with an acidic carboxymethyl group.
3. A neutral polar amino acid: Serine is a polar and neutral amino acid with a hydroxymethyl group.
4. A non-polar aliphatic amino acid: Alanine is an aliphatic, nonpolar and neutral amino acid with a methyl side chain.
5. An aromatic amino acid: Tryptophan is an aromatic, nonpolar and neutral amino acid with an indole side chain.