Heat = mass * heat capacity of water * change in temperature
mass = 5.25 g
heat capacity of water = 4.186 joule/gram °C
Change in temperature = 62.8°C - 5.3°C = 57.5 °C
Plug in the values
heat = 5.25 g * 4.186 joule/gram °C * 57.5 °C = 1263.6 J
Rounded to two three significant figures, it is 1260 J of energy needed.
In terms of calories, the heat capacity of water is 1 calorie/gram °C. So do the plugging in all over again.
mass = 5.25 g
heat capacity of water = 1 calorie/gram °C
Change in temperature = 62.8°C - 5.3°C = 57.5 °C
heat = 5.25 g * 1 calorie/gram °C * 57.5 °C = 301.9 calories
Rounded to 3 significant figures, it is 302 calories
Q=SM∆T=4.18*5.25*(62.8-4.3)=1280 J
1280 J * (1 cal/4.18 J) = 307 cal
Hydrogenation – meaning, to treat with hydrogen – is a chemical reaction between molecular hydrogen and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic compounds.
I believe the answer is false. It is not safe <span>to heat flammable liquids with a bunsen burner even when it’s done in a fume hood. It is never recommendable to heat liquids that are flammable since it has a very high risk. Hope this answers the question.</span>
Answer:
None of these answers are correct.
CO2 is a covalent not ionic compound
It DOES melt, though at a very low temperature
Its melting point is negative, not high
Explanation: