Answer:
16.56 g
Explanation:
Mass is the production of Volume and Density.
m = V. d = 6 × 2.76 = 16.56 g
Answer:
the friction?? or the movement
Explanation:
sense the salt is so light its easy to move
and
.
Assuming complete decomposition of both samples,
First compound:
;
of the first compound would contain
Oxygen and mercury atoms seemingly exist in the first compound at a
ratio; thus the empirical formula for this compound would be
where the subscript "1" is omitted.
Similarly, for the second compound
;
of the first compound would contain
and therefore the empirical formula
.
<u>Answer:</u> The freezing point of solution is 2.6°C
<u>Explanation:</u>
To calculate the depression in freezing point, we use the equation:

Or,

where,
= 
Freezing point of pure solution = 5.5°C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal freezing point depression constant = 5.12 K/m = 5.12 °C/m
= Given mass of solute (anthracene) = 7.99 g
= Molar mass of solute (anthracene) = 178.23 g/mol
= Mass of solvent (benzene) = 79 g
Putting values in above equation, we get:

Hence, the freezing point of solution is 2.6°C
1,3-pentadiene has two double bonds which are conjugated, which undergo electrophilic addition reaction on reacting with
.
The structure of 1,3-pentadiene is shown in the image.
When strong acid such as
reacts with 1,3-pentadiene, the electrophilic addition reaction can occur either on double bond at 1,2-position or at 3,4-position. The reaction that occurs is shown in the image.