Answer:
&
Explanation:
Given:
- interior temperature of box,
- height of the walls of box,
- thickness of each layer of bi-layered plywood,
- thermal conductivity of plywood,
- thickness of sandwiched Styrofoam,
- thermal conductivity of Styrofoam,
- exterior temperature,
<u>From the Fourier's law of conduction:</u>
....................................(1)
<u>Now calculating the equivalent thermal resistance for conductivity using electrical analogy:</u>
.....................(2)
Putting the value from (2) into (1):
is the heat per unit area of the wall.
The heat flux remains constant because the area is constant.
<u>For plywood-Styrofoam interface from inside:</u>
&<u>For Styrofoam-plywood interface from inside:</u>
<span>Now that you know the time to reach its maximum height, you have enough information to find out the initial velocity of the second arrow. Here's what you know about it: its final velocity is 0 m/s (at the maximum height), its time to reach that is 2.8 seconds, but wait! it was fired 1.05 seconds later, so take off 1.05 seconds so that its time is 1.75 seconds, and of course gravity is still the same at -9.8 m/s^2. Plug those numbers into the kinematic equation (Vf=Vi+a*t, remember?) for 0=Vi+-9.8*1.75 and solve for Vi to get.......
17.15 m/s</span>
There are six steps to this process , I uploaded step one and as you can see you can get all six on Quizlet:). Good luck
Answer:
The new Coulomb force is q₁q₂/9πε₀r²
Explanation
The coulomb force between the two charges q₁ and q₂ at a distance r in air is given by F = q₁q₂/4πε₀r².
Now, let us assume the material of dielectric constant κ = 9 is placed between them on the side of the q₁ charge. The value of its effective charge is now q₃ = q₁/κ at a distance of d = r/2 from the q₂ charge.
Since we have air between q₂ and q₃, the coulomb force between them is
F' = q₂q₃/4πε₀d²
= q₂(q₁/κ)/4πε₀(r/2)²
= 4q₂q₁/κ4πε₀r²
= 4/κ(q₂q₁/4πε₀r²)
= 4/9 × (q₂q₁/4πε₀r²)
= q₁q₂/9πε₀r²
So, the new Coulomb force is q₁q₂/9πε₀r²
Answer:
False.
Explanation:
Decibels (dB) measure sound levels