Answer:
a) v = 7.69 10³ m / s, b) T = 92.6 min
Explanation:
a) For this exercise we use the centripetal acceleration ratio, which in itself assumes a circular orbit, is equal to the acceleration of gravity
a = v² / r
v =
the distance to the ISS is
r = R_earth + d
r = 6400 10³ + 400 10³
r = 6800 10³ m
we calculate
v =
Ra (8.69 6800 103)
v =
v = 7.687 10³ m / s
the result with the correct significant figures
v = 7.69 10³ m / s
b) The speed of the ISS is constant, so we can use the uniform motion relationships
v = d / t
if distance is the orbit distance
d = 2π r
time is called period
v = 2π r / T
T = 2π r / v
let's calculate
T = 2π 6800 10³ /7,687 10³
T = 5.558 10³ s
let's reduce the period to minutes
T = 5.558 10³ s (1 min / 60s)
T = 9.26 10¹ min
T = 92.6 min
Answer: A.Validate and implement the results.
The final step in a forecasting system is to validate and implement the results. This can be similar to a presentation. After going through all the steps from the planning, researching, and gathering of data, making the forecast, validating and implementing the results will be the last thing that needs to be done.
I can't particularly place what Icelandic contributed.
But every other culture contributed majorly.
So I would go for option b.
Answer:

Given:
1$ = 4q
To Find:
How many quarters are in 20$
Explanation:
To find out how many quarters are in 20$ we need to multiple 4 × 20.


