Answer:
the answer is C
Explanation:
The car, first is at rest and if you don't accelerate it won't move. When to hit the gas it will accelerate from rest
Eventually wouldn't it collapse in on itself and create black hole.
Answer:
a. metallic bond
b. the valence electrons from the s and p orbitals of the interacting metal atoms delocalize. That is to say, instead of orbiting their respective metal atoms, they form a “cloud” of electrons that surrounds the positively charged atomic nuclei of the interacting metal ions.
c. due to the presence of free electrons in its outer energy levels
If an object's velocity is steadily increasing it means that the acceleration is constant at a certain value.
Choice A shows an acceleration of zero which would only be true if the object was not moving or if its velocity was not changing.
Choice B gives us a graph showing acceleration increasing over time and is therefore incorrect.
Choice C is correct because the acceleration is constant. Steadily increasing tells us that the acceleration is fixed at a certain value.
Choice D is incorrect an represents a constant negative acceleration. This would be the case if the object was steadily decreasing in velocity.
Answer:

Explanation:
The force on the point charge q exerted by the rod can be found by Coulomb's Law.

Unfortunately, Coulomb's Law is valid for points charges only, and the rod is not a point charge.
In this case, we have to choose an infinitesimal portion on the rod, which is basically a point, and calculate the force exerted by this point, then integrate this small force (dF) over the entire rod.
We will choose an infinitesimal portion from a distance 'x' from the origin, and the length of this portion will be denoted as 'dx'. The charge of this small portion will be 'dq'.
Applying Coulomb's Law:

The direction of the force on 'q' is to the right, since both charges are positive, and they repel each other.
Now, we have to write 'dq' in term of the known quantities.

Now, substitute this into 'dF':

Now we can integrate dF over the rod.
