In a fluid, all the forces exerted by the individual particles combine to make up the pressure exerted by the fluid
Due to fundamental nature of fluids, a fluid cannot remain at rest under the presence of shear stress. However, fluids can exert pressure normal to any contacting surface. If a point in the fluid is thought of as a small cube, then it follows from the principles of equilibrium that the pressure on every side of this unit of fluid must be equal. but if this were not a case, the fluid would move in the directions of the resulting force, So the pressure on a fluid at rest is isotropic.
Hope This Helps :D <span />
Answer:
The length of her shadow is changing at the rate -2 m/s
Explanation:
Let the height oh the street light, h = 22 ft
Let the height of the woman, w = 5.5 ft
Horizontal distance to the street light = l
length of shadow = x
h/w = (l + x)/x
22/5.5 = (l + x)/x
4x = l + x
3x = l
x = 1/3 l
taking the derivative with respect to t of both sides
dx/dt = 1/3 dl/dt
dl/dt = -6 ft/sec ( since the woman is walking towards the street light, the value of l is decreasing with time)
dx/dt = 1/3 * (-6)
dx/dt = -2 m/s
Answer:
Primero, definimos el desplazamiento como la distancia entre la posición final y la posición inicial.
Así, si comenzamos abajo, luego subimos la escalera, y luego bajamos, la posición final y la posición inicial serán la misma
por lo que el desplazamiento es igual a cero.
La medida recorrida es el espacio total recorrido.
Es decir, si entre el principio y el final de la escalera hay una distancia D.
La persona que sube y baja, recorre esta distancia dos veces.
Entonces cuando una persona sube y baja la escalera, la medida de su trayectoria será 2*D.
B. They came up with the term “radioactivity.”
C. They conducted experiments with uranium-containing minerals and pure uranium.
E. They discovered two new radioactive elements
Answer:
The ratio of lengths of the two mathematical pendulums is 9:4.
Explanation:
It is given that,
The ratio of periods of two pendulums is 1.5
Let the lengths be L₁ and L₂.
The time period of a simple pendulum is given by :

or

Where
l is length of the pendulum

or
....(1)
ATQ,

Put in equation (1)

So, the ratio of lengths of the two mathematical pendulums is 9:4.