1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novosadov [1.4K]
2 years ago
7

Olivia wants to find out whether a substance will fluoresce. She says she should put it in a microwave oven. Do you agree with h

er? Why or why not?
Physics
2 answers:
andreyandreev [35.5K]2 years ago
4 0
Disagree.
Fluoresce objects will only glow when put under actual Ultraviolet light. This is due to the molecules becoming excited by the ultraviolet radiation.


Microwaves give micro-waves that are present in another spectrum of wave length and will not be able to fluoresce the molecules. If it’s not “ultra violet “.... it’s not going to glow.
konstantin123 [22]2 years ago
4 0

Answer:

Sample Response: I disagree with her because many substances show fluorescence under ultraviolet light, not microwaves.

Explanation:

You might be interested in
Automobile A and B are initially 30 m apart travelling in adjacent highway lanes at speeds VA = 14.4 km/hr., VB 23.4 km/hr. at t
marshall27 [118]

Answer:

        x = 240 m

Explanation:

This is a kinematics exercise

Let's fix our frame of reference on car A

           x = x₀ₐ+ v₀ₐ t + ½ aₐ t²

         

the initial position of car a is zero

           x = 0 + v₀ₐ t + ½ 0.8 t²

for car B

          x = x_{ob} + v_{ob} t - ½ a_b t²

     

car B's starting position is 30 m

         x = 30 + v_{ob} t - ½ 0.4 t²

at the point where they meet, the position of the two vehicles is the same

         0 + v₀ₐ t + ½ 0.8 t² = 30 + v_{ob} t - ½ 0.4 t²

let's reduce the speeds to the SI system

        v₀ₐ = 14.4 km / h (1000 m / 1 km) (1h / 3600s) = 4 m / s

        v_{ob} = 23.4 km / h = 6.5 m / s

        4 t + 0.4 t² = 30 + 6.5 t - 0.2 t²

        0.2 t² - 2.5 t - 30 = 0

        t² - 12.5 t - 150 = 0

we solve the quadratic equation

       t = \frac{12.5 \pm \sqrt{12.5^2 + 4 \ 150}  }{2}

       t = \frac{12.5 \  \pm 27.5}{2}

       t₁ = 20 s

       t₂ = -7.5 s

time must be a positive quantity so the correct result is t = 20 s

let's look for the distance

        x = 4 t + ½ 0.8 t²

        x = 4 20 + ½ 0.8 20²

        x = 240 m

8 0
2 years ago
8. While taking a measurement, Ajay put the 2nd mark of the scale to the edge of the line and the mark that pointed to the end o
Leni [432]

Answer:

The length of line is 78 cm or 0.78 m.

Explanation:

initial reading 2 mark

final reading 80 cm

The length of the line

= final reading - initial reading

= 80 - 2

= 78 cm

1 cm = 0.01  m

So, 78 cm = 0.78 m

4 0
2 years ago
A counterflow double-pipe heat exchanger is used to heat water from 20°C to 80°C at a rate of 1.2 kg/s. The heating is to be com
bixtya [17]

Answer:L=109.16 m

Explanation:

Given

initial temperature =20^{\circ}C

Final Temperature =80^{\circ}C

mass flow rate of cold fluid \dot{m_c}=1.2 kg/s

Initial Geothermal water temperature T_h_i=160^{\circ}C

Let final Temperature be T

mass flow rate of geothermal water \dot{m_h}=2 kg/s

diameter of inner wall d_i=1.5 cm

U_{overall}=640 W/m^2K

specific heat of water c=4.18 kJ/kg-K

balancing energy

Heat lost by hot fluid=heat gained by cold Fluid

\dot{m_c}c(T_h_i-T_h_e)= \dot{m_h}c(80-20)

2\times (160-T)=1.2\times (80-20)

160-T=36

T=124^{\circ}C

As heat exchanger is counter flow therefore

\Delta T_1=160-80=80^{\circ}C

\Delta T_2=124-20=104^{\circ}C

LMTD=\frac{\Delta T_1-\Delta T_2}{\ln (\frac{\Delta T_1}{\Delta T_2})}

LMTD=\frac{80-104}{\ln \frac{80}{104}}

LMTD=91.49^{\circ}C

heat lost or gain by Fluid is equal to heat transfer in the heat exchanger

\dot{m_c}c(80-20)=U\cdot A\cdot (LMTD)

A=\frac{1.2\times 4.184\times 1000\times 60}{640\times 91.49}=5.144 m^2

A=\pi DL=5.144

L=\frac{5.144}{\pi \times 0.015}

L=109.16 m

6 0
2 years ago
Comparing X-ray to radio wave, which has a shorter wavelength?
Daniel [21]

Answer:

x-ray

Explanation:

X-rays can penetrate through matter because of their high frequencies while radio waves are not able to do so as much. If you think about it, taking an x-ray requires a lot more energy than for radio waves to allow you to listen to songs on the radio. Hope this helps :)

6 0
3 years ago
A person standing on a scale feels a normal force of 655 N pushing up on him. What is his mass?
Dahasolnce [82]
I’m pretty sure the answer would be 66.79141 kilogram force
5 0
2 years ago
Other questions:
  • A 7.0-kg rock is subject to a variable force given by the equation f(x)=6.0n−(2.0n/m)x+(6.0n/m2)x2 if the rock initially is at r
    12·1 answer
  • What is a non example of atmosphere
    12·2 answers
  • How are ions different from atoms
    14·1 answer
  • Ultraviolet light causes production of vitamin d3 in the cells of the __________.
    8·1 answer
  • What is the average rate of change for this exponential function for the interval from x = 2 to x= 4 ?
    12·2 answers
  • A wave travelling along the positive x-axis side with a
    6·1 answer
  • If an object is moving and the forces acting on it are unbalanced in the direction of motion, the object will...
    5·2 answers
  • Which of the following quantities can be measured in the same units as Work?
    13·1 answer
  • The 20 oz orange soda you drank at lunch contained 1 oz. Of real orange juice. What percent of the orange soda is real orange ju
    14·1 answer
  • Select the correct answer.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!