No place in the river is characterized like this
<em>Matter is composed of elementary particles i.e. quarks and leptons.</em>
<em>Matter is composed of elementary particles i.e. quarks and leptons.Matter is composed of elementary particles which is called quarks and leptons. Quarks consist of protons, neutrons and electrons. All observable matter is made up of up quarks, down quarks and electrons.</em>
<em>Matter is composed of elementary particles i.e. quarks and leptons.Matter is composed of elementary particles which is called quarks and leptons. Quarks consist of protons, neutrons and electrons. All observable matter is made up of up quarks, down quarks and electrons.Lepton is an elementary particle consist of half-integer spin that does not undergo strong interactions. Leptons exist on two main classes i.e. charged leptons, and neutral leptons. Electron, electron neutrino, muon, muon neutrino, tau and tau neutrino are the six types of leptons.</em>
The relationship between work and energy is that work can transfer energy between objects and cause a change in the form of energy.
<h3>What is energy?</h3>
Energy is simply defined as the ability to do work.
Energy possessed by any object or matter enables it to do work of various forms.
Energy can be transferred from one object to another. Also, energy can be transformed into various forms.
Therefore, the relationship between work and energy is that work can transfer energy between objects and cause a change in the form of energy.
Learn more about energy and work at: brainly.com/question/13881533
#SPJ1
Answer:
D)
Explanation:
The Period-Luminosity relationship tells us that luminosity increases with the period, and of course the more luminosity a star has the more far away they can be seen, so from this we know that:
A) False since lower luminosities can be observed when they are close.
B) False since longer periods means higher luminosities
C) False since lower luminosities can be observed when they are close.
D) True: Variable stars with shorter periods have lower luminosities, so they can only be observed when they are close.