Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.
A hillside of course my friend
Answer:
1.93 x 10∧3 N
Explanation:
The picture attached shows the calculation
Answer:
Explanation:
still water speed is 50 m / 25.0 s = 2.00 m/s or 200 cm/s
In lane 1 the effective speed would be 201.2 cm/s
5000 cm / 201.2 cm/s = 24.85 s
The change is 25.00 - 24.85 = 0.15 s decrease in time
In lane 8, the effective speed would be 198.8 cm/s
5000 cm / 198.8 cm/s = 25.15 s
The change is 25.00 - 25.15 = 0.15 s increase in time
probabilityAnswer:
2/27
Explanation:
The elk can not be eaten so we remove that from the probablity
so we have x/18
songbird = 4/18
mice = 6/18
4/18*6/18 = 2/27