1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ss7ja [257]
3 years ago
15

A circuit consists of two very low-resistance rails separated by 0.300 m, with a 50.0 ohm resistor connected across them at one

end and a conducting, moveable bar at the other end. The circuit is in a uniform 0.100 T magnetic field that is parallel to the area vector of the circuit. The bar is moving at a constant velocity such that the resistor dissipates 1.50 W of power. What is the speed of the bar
Physics
1 answer:
Levart [38]3 years ago
6 0

Answer:

v = 288.67 m/s

Explanation:

Given that:

length of the separation I = 0.3

Resistance R = 50.0 ohms

Magnetic field B = 0.100 T

Power dissipated = 1.50 W

In a simple circuit, The Emf  voltage of the power dissipated can be determined via the expression:

Power =\frac{V^2}{R}

1.5 = \frac{V^2}{50}

V^2 = 1.5*50

V^2 = 75

V = \sqrt{75}

V = 8.660 V

From the Electromotive Force Emf ; we can calculate the speed of the bar

i.e Emf = B×v×l

8.660 = 0.1 × v × 0.3

v = \frac {8.66}{0.1*0.3}

v = 288.67 m/s

You might be interested in
A 68-kg skydiver has a speed of 52 m/s at an altitude of 670 m above the
Arlecino [84]

Answer:

91936J

Explanation:

We know that kinetic energy= 1/2 mv^2

M= mass = 68 Kg

v= velocity= 52 m/s

KE=1/2 × 68 × (52)^2

KE= 1/2 × 68 × 2704

KE= 91936J

4 0
3 years ago
PLEASE HELP ME I NEED IT!!
Alla [95]

Answer:

d

Explanation:

7 0
2 years ago
Read 2 more answers
A baseball is hit that just goes over a wall that is 45.4m high. If the baseball is traveling at 46.2 m/s at an angle of 32.7° b
mario62 [17]

Answer:

54.9 m/s at 44.9 degrees

Explanation:

If the ball has a total velocity of 46.2 m/s, at an angle of -32.7 degrees, we can decompose its speed into its horizontal and vertical components.

Vx = V * cos(a) = 46.2 * cos(-32.7) = 38.9 m/s

Vy = V * sin(a) = 46.2 * sin(-32.7) = -25 m/s

SInce there is no force on the horizontal direction (omitting air drag), we can assume constant horizontal speed.

Since a ball thrown is at free fall, only affected by gravity (omitting air drag), we can say it is affected by constant acceleration, therefore we can use

Y(t) = Y0 + Vy0 *t + 1/2 * a * t^2

We consider t=0 as the moment when the ball was hit, so in this case Y0 = 1 m

If we take the first derivative of the equation of position, we get the equation for speed

V(t) = Vy0 + a * t

We know that being t2 the moment the ball goes over the wall

V(t2) = -25 m/s

Y(t2) = 45.4 m

So:

45.4 = 1 + Vy0 * t2 + 1/2 * a * t2^2

-25 = Vy0 + a * t2

Then:

Vy0 = -25 - a * t2

So:

45.4 = 1 + (-25 - a * t2) * t2 + 1/2 * a * t2^2

0 = -44.4 - 25 * t2 - 1/2 * a * t2^2

a = -9.81 m/s^2

0 = -44.4 - 25 * t2 + 4.9 * t2^2

Solving this quadratic equation we get:

t1 = -1.39 s

t2 = 6.5 s

Since we are looking for a positive value we disregard t1.

Now we can obtain Vy0:

Vy0 = -25 + 9.81 * 6.5 = 38.76 m/s

Since horizontal speed is constant Vx0 = 38.9 m/s

By Pythagoras theorem we obtain the value of the initial speed:

V0 = \sqrt{Vx0^2 + Vy0^2} = \sqrt{38.9^2 + 38.76^2} = 54.9 m/s

The angle is in the the first quadrant because both comonents ate positive, so: 0 < a < 90

a = atan(Vy0/Vx0) = 44.9 degrees

5 0
3 years ago
The half-life of the radioactive element beryllium-13 is 5 × 10-10 seconds, and half-life of the radioactive element beryllium-1
telo118 [61]
<h2>Answer: The half-life of beryllium-15 is 400 times greater than the half-life of beryllium-13.</h2>

Explanation:

The half-life h of a radioactive isotope refers to its decay period, which is the average lifetime of an atom before it disintegrates.

In this case, we are given the half life of two elements:

beryllium-13: h_{B-13}=5(10)^{-10}s=0.0000000005s

beryllium-15: h_{B-15}=2(10)^{-7}s=0.0000002s

As we can see, the half-life of beryllium-15 is greater than the half-life of beryllium-13, but how great?

We can find it out by the following expression:

h_{B-15}=X.h_{B-13}

Where X is the amount we want to find:

X=\frac{h_{B-15}}{h_{B-13}}

X=\frac{2(10)^{-7}s}{5(10)^{-10}s}

Finally:

X=400

Therefore:

The half-life of beryllium-15 is <u>400 times greater than</u> the half-life of beryllium-13.

8 0
2 years ago
Help please :pensive:
tino4ka555 [31]

Answer:

0m/s²

Explanation:

Given parameters:

Initial velocity of the boat = 8m/s

Final velocity  = 8m/s

Time taken  = 4s

Unknown:

Acceleration of the boat = ?

Solution:

Acceleration is the rate of change of velocity with time.

It is mathematically expressed as;

        A = \frac{v - u}{t}

A is the acceleration

v is the final velocity

u is the initial velocity

t is the time taken

    Insert the parameters and solve;

  A = \frac{8-8}{4}   = 0m/s²

6 0
2 years ago
Other questions:
  • What is water that travels across land that may pick up substances called
    10·2 answers
  • Which part of an Adam is actively exchanged or shared in a chemical bond?
    12·1 answer
  • Plants absorb WHAT from the atmosphere and release WHAT to the atmosphere.
    11·2 answers
  • Why is the current atomic model called the "electron cloud model?
    8·1 answer
  • Mass is constant, but weight can change with location. Explain.
    14·1 answer
  • What is the actual land form of a shield volcano?<br><br> PLEASE HELP
    10·2 answers
  • Which best describes the speed of the ball as it is thrown straight up into the air and comes back down
    7·1 answer
  • A soccer ball is released from rest at the top of a grassy incline. After 4.1 seconds, the ball travels 43 meters and 1.0 s afte
    6·1 answer
  • In the laboratory you will find three bottles with the following labels:
    12·1 answer
  • Who were the first two people in the universe?<br> what is faster then the speed of light?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!