Answer:

Explanation:
a) Fundamental frequency
A harmonic is an integral multiple of the fundamental frequency.


b) Wave speed
(i) Calculate the wavelength
In a fundamental vibration, the length of the string is half the wavelength.

(b) Calculate the speed
s



Answer:
λ = 482.05 nm
Explanation:
The diffraction phenomenon and the diffraction grating is described by the expression
d sin θ = m λ
where d is the distance between two consecutive slits, λ the wavelength and m an integer representing the order of diffraction
in this case they indicate the distance between slits, the angle and the order of diffraction
λ =
d sin θ / m
let's calculate
λ = 1.00 10⁻⁶ sin 74.6 / 2
λ = 4.82048 10⁻⁷ m
Let's reduce to nm
λ = 4.82048 10⁻⁷ m (10⁹ nm / 1 m)
λ = 482.05 nm
You get a more low sound.
Conversely, when the wavelength becomes shorter you get a more treble sound.
;-)
We can answer the question by looking at the Ohm's law, which gives us the relationship between voltage (V), current (I) and resistance (R) of a circuit:

equivalently, we can rewrite it as

by looking at the equation, we can make the following observations:
1) The current is proportional to the voltage: therefore, if the voltage increases, the current increases as well; if the voltage decreases, the current decreases too.
2) The current is inversely proportional to the resistance: if the resistance increases, the current decreases, and if the resistance decreases, the current increases.