The diagram shows a simple electric generator. The needle that measures electric current will move back and forth between a largely positive and a large negative value.
- What is an electric generator?
- An electric generator is physically equivalent to an electric motor. but it converts mechanical energy into electrical energy.
- The electrical field generated is dependent on the inclination of the wire with respect to magnetic field lines, and this inclination changes over time,
because of that she will experience a varying electrical field, and thus a varying electric current will be zero.
The maximum positive value will occur when the wire is perpendicular to the magnetic field lines after one-fourth of rotation, and then zero.
Hence option C is correct.
The diagram shows a simple electric generator. The needle that measures electric current will move back and forth between a largely positive and a large negative value.
Learn more about electric generator here:
<u>brainly.com/question/12296668</u>
<u />
#SPJ4
Construct a vector diagram. It will be a right-angled triangle. One vector (the hypotenuse) represents the heading of the boat, one represents the current and one represents the resultant speed of the boat, which I'll call x. Their magnitudes are 20, 3 and x. Let the required angle = theta. We have:
<span>theta = arcsin(3/20) = approx. 8.63° </span>
<span>The boat should head against the current in a direction approx. 8.63° to the line connecting the dock with the point opposite, or approx. 81.37° to the shore line. </span>
<span>x = sqrt(20^2 - 3^2) </span>
<span>= sqrt(400 - 9) </span>
<span>= sqrt 391 </span>
<span>The boat's crossing time = </span>
<span>0.5 km/(sqrt 391 km/hr) </span>
<span>= (0.5/sqrt 391) hr </span>
<span>= approx. 0.025 hr </span>
<span>= approx. 91 seconds</span>
Answer:
<em>1</em><em>. </em><em>A body is said to be at rest if its position does not change with respect to its surroundings.</em>
Answer:
All of the above
Explanation:
because these are all senses of the body and therefore you're receiving signals from all of them all the time
Answer:
240m/s
Explanation:
The equation to calculate is wavelength= velocity/ frequency so to find the velocity you would have to multiply frequency by wavelength.