<span>When the fuel of the rocket is consumed, the acceleration would be zero. However, at this phase the rocket would still be going up until all the forces of gravity would dominate and change the direction of the rocket. We need to calculate two distances, one from the ground until the point where the fuel is consumed and from that point to the point where the gravity would change the direction.
Given:
a = 86 m/s^2
t = 1.7 s
Solution:
d = vi (t) + 0.5 (a) (t^2)
d = (0) (1.7) + 0.5 (86) (1.7)^2
d = 124.27 m
vf = vi + at
vf = 0 + 86 (1.7)
vf = 146.2 m/s (velocity when the fuel is consumed completely)
Then, we calculate the time it takes until it reaches the maximum height.
vf = vi + at
0 = 146.2 + (-9.8) (t)
t = 14.92 s
Then, the second distance
d= vi (t) + 0.5 (a) (t^2)
d = 146.2 (14.92) + 0.5 (-9.8) (14.92^2)
d = 1090.53 m
Then, we determine the maximum altitude:
d1 + d2 = 124.27 m + 1090.53 m = 1214.8 m</span>
The specific heat capacity of the substance is 
Explanation:
When an object of mass m is supplied with a certain amount of energy Q, its temperature increases according to the equation:

where
m is the mass of the object
is its specific heat capacity
is the increase in temperature of the object
In this problem, we have

m = 50 g

Therefore, we can solve for
to find its specific heat capacity:

Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
Current = (voltage) / (resistance)
= (12 V) / (2.5 ohms)
= 4.8 Amperes
The speed of sound is influenced by several factors, including medium, density and temperature. The rate at which sound waves moves varies widely from one situation to the next and can change dramatically in a short period of time.