What class is that in ?????
use the equations provided it shouldn't he hard
In light of this, V=V 0 loge (r/r 0 ) Field E= dr dV =V 0(r0r) eE= r mV2 alternatively, reV0r0=rmV2. V=(m eV 0 r 0 ) \ s1 / 2mV=(m e V 0 r 0 ) 1/2 = constant mvr= 2 nh, also known as Bohr's quantum condition or Hermitian matrix.
Show that the eigenfunctions for the Hermitian matrix in review exercise 3a can be normalized and that they are orthogonal.
Demonstrate how the pair of degenerate eigenvalues for the Hermitian matrix in review exercise 3b can be made to have orthonormal eigenfunctions.
Under the given Hermitian matrix, "border conditions," solve the following second order linear differential equation: d2x/ dt2 + k2x(t) = 0 where x(t=0) = L and dx(t=0)/ dt = 0.
To know more about Hermitian click on the link:
brainly.com/question/14671266
#SPJ4
Answer: unit n/c
Explanation: This should be the answer because I just asked my Physics Teachers I hope this is correct
Hope This Helps :)
Answer:
false
A hypothesis states a presumed relationship between two variables in a way that can be tested with empirical data. ... The cause is called the independent variable; and the effect is called the dependent variable.