Answer:
The latent heat of fusion of water is 334.88 Joules per gram of water.
Explanation:
Let the latent heat of ice be 'x' J/g
1) Thus heat absorbed by 100 gram of ice to get converted into water equals

2) heat energy required to raise the temperature of water from 0 to 25 degree Celsius equals

Thus total energy needed equals 
3) Heat energy released by the decrease in the temperature of water from 25 to 11 degree Celsius is

Now by conservation of energy we have

Nuclear fusion in the core tries to blow the star apart. Gravity holds it together. Whoever designed that system really knew what he was doing. I'm kinda grateful to him.
The magnitude of the magnetic field inside the solenoid is
.
The given parameters;
- <em>length of the solenoid, L = 91 cm = 0.91 m</em>
- <em>radius of the solenoid, r = 1.5 cm = 0.015 m</em>
- <em>number of turns of the solenoid, N = 1300 </em>
- <em>current in the solenoid, I = 3.6 A</em>
The magnitude of the magnetic field inside the solenoid is calculated as;

where;
is the permeability of frees space = 4π x 10⁻⁷ T.m/A

Thus, the magnitude of the magnetic field inside the solenoid is
.
Learn more here:brainly.com/question/17137684
Remember, that while sped is constant, acceleration is not. Acceleration is when velicity changes. So the graph which shows the slop <span>of a velocity vs time describes acceleration.
</span>If we have the straight line on the graph it means that the slope is always the same whereas the <span>non-linear graphs has a variable slope that changes depending on your point in the graph.
</span>To conclude - if your graph is not a straight line it has variable acc at many points.<span>
</span>
Answer:
20 m/s
30 m/s
Explanation:
Given:
v₀ = -10 m/s
a = -9.8 m/s²
When t = 1 s:
v = v₀ + at
v = (-10 m/s) + (-9.8 m/s²) (1 s)
v = -19.8 m/s
When t = 2 s:
v = v₀ + at
v = (-10 m/s) + (-9.8 m/s²) (2 s)
v = -29.6 m/s
Rounded to one significant figures, the speed of the ball at 1 s and 2 s is 20 m/s and 30 m/s, respectively.