1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denpristay [2]
3 years ago
14

Which of the following solid fuels has the highest heating value?

Physics
1 answer:
Makovka662 [10]3 years ago
4 0
I wanna say its A . I could be wrong but im almost 100 percent sure that its A wood
You might be interested in
A cylindrical block of mass M=50kg and height h=0.2m is hanging on a rope and is in equilibrium. Any difference in atmospheric p
agasfer [191]

Answer:

\Delta P = 1961.4\,Pa

Explanation:

The difference of pressure is given by gauge pressure:

\Delta P = \rho_{w}\cdot g \cdot \Delta h

\Delta P = \left(1000\,\frac{kg}{m^{3}} \right)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (0.2\,m)

\Delta P = 1961.4\,Pa

8 0
4 years ago
Read 2 more answers
What is the appropriate term for the movement of the orange liquid in the lava lamp animation?
Taya2010 [7]
Heat energy is responsible for it.It is because the waxy substance present in the lava lamp get hot at its bottom and cold on its top and this process is mostly like convection
5 0
3 years ago
Suppose a car is traveling at +25.0 m/s, and the driver sees a traffic light turn red. After 0.340 s has elapsed (the reaction t
scoundrel [369]
First, we will get the distance traveled before the driver applied the brakes.
distance = velocity * time
distance = 25*0.34 = 8.5 m

Now, we will calculated the distance that the car traveled after the driver applied the brakes. To do this, we will use the equation of motion:
<span>vf^2 = vi^2 + 2*a*d where:
</span>vf = zero, vi = 25 m/s and a = -7 m/s^2
Note: The negative sign is only to show deceleration 
d = <span> 1/2*(625) /(7) = 44.6428 m

The total stopping distance =</span> 8.5 + 44.6428 = 53.1428 m
3 0
3 years ago
A sphere of radius r = 5cm carries a uniform volume charge density rho = 400 nC/m^3. Q. What is the total charge Q of the sphere
Tanzania [10]

Answer:

The total charge Q of the sphere is 2.094\times10^{-10}\ C.

Explanation:

Given that,

Radius = 5 cm

Charge density J= 400\ nC/m^3

We need to calculate the total charge Q of the sphere

Using formula of charge

q=\rho V

Where, \rho = charge density

V = volume

Put the value into the formula

q=\rho\times(\dfrac{4}{3}\pi r^3)

Put the value into the formula

q=\dfrac{4}{3}\times\pi\times400\times10^{-9}\times(5\times10^{-2})^3

q=2.094\times10^{-10}\ C

Hence, The total charge Q of the sphere is 2.094\times10^{-10}\ C.

6 0
3 years ago
Copper and aluminum are being considered for a high-voltage transmission line that must carry a current of 60.7 A. The resistanc
lisov135 [29]

Answer:

a) The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b)The mass per unit length \lambdaλ for a copper cable is 0.757kg/m

c)The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d)The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

Explanation:

The expression for electric field of conductor is,

E =  \frac{V}{L}

The general equation of voltage is,

V = iR

The expression for current density in term of electric field is,

J = \frac{E}{p}

Substitute (V/L)  for E in the above equation of current density.

J = \frac{V}{pL} ------(1)

Substitute iR for V in equation (1)

J = \frac{iR}{pL} ------(2)

Substitute 1.69 × 10⁸ Ω .m for p

50A for i

0.200Ω.km⁻¹ for (R/L) in eqn (2)

J = \frac{(50) (0.200\times 10^-^3) }{1.69 \times 10^-^8 } \\\\= 5.91 \times 10^5A.m^-^2

The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b) The expression for resistivity of the conductor is,

p = \frac{RA}{L}

A = \frac{pL}{R}

The expression for mass density of copper is,

m = dV

where, V is the density of the copper.

Substitute AL for V in equation of the mass density of copper.

m=d(AL)

m/L = dA

λ is use for (m/L)

substitute,

pL/R for A  and λ is use for (m/L) in the eqn above

\lambda = d\frac{p}{\frac{R}{L} } ------(3)

Substitute 0.200Ω.km⁻¹ for (R/L)

8960kgm⁻³  for d and 1.69 × 10⁸ Ω .m

\lambda = (8960) \frac{(1.69 \times 10^-^8 }{0.200\times 10^-^3} \\\\= 0.757kg.m^-^1

c) Using the equation (2) current density for aluminum cable is,

J = \frac{iR}{pL}

p is the resistivity of the aluminum cable.

Substitute 2.82 × 10⁻⁸Ω.m for p ,

50A for i and 0.200Ω.km⁻¹ for (R/L)

J = \frac{(50)(0.200\times10^-^3) }{2.89\times 10^-^8} \\\\= 3.5 \times10^5A/m^2

The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d) Using the equation (3) mass per unit length for aluminum cable is,

\lambda = d\frac{p}{\frac{R}{L} }

p is the resistivity and is the density of the aluminum cable.

Substitute 0.200Ω.km⁻¹ for (R/L), 2700 for d and 2.82 × 10⁻⁸Ω.m for p

\lambda = (2700) \frac{(2.82 \times 10^-^8) }{(0.200 \times 10^-^3) } \\\\= 0.380kg/m

The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

7 0
4 years ago
Read 2 more answers
Other questions:
  • A proton is traveling horizontally to the right at 4.60×106 m/s . Part A Find (a)the magnitude and (b) direction of the weakest
    7·1 answer
  • Aerobic exercise is exercise where oxygen is not present.
    8·1 answer
  • What is the approximate range of wavelengths for visible light?
    11·1 answer
  • What is the taste of the resulting mixture?
    15·2 answers
  • For a medium to transmit a wave, the medium must _____.
    8·1 answer
  • If a system is isolated the total energy within that system is constant. Consider the case of a hot cup of coffee: when it cools
    12·1 answer
  • 3. 500ml of 60oC water at is added to a beaker. Water’s specific heat is 4.186 J/g °C. You have 40ml of and unknown substance th
    7·1 answer
  • What services can you expect from a personal trainer?
    14·2 answers
  • A lava lamp is a decorative item found in some homes. The lamp portion contains a waxy substance in a liquid medium. When the la
    8·1 answer
  • The most soaring vocal melody is in Johann Sebastian Bach's Mass in B Minor. In one section, the basses, tenors, altos, and sopr
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!