1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Illusion [34]
3 years ago
10

A mortar is like a small cannon that launches shells at steep angles. A mortar crew is positioned near the top of a steep hill.

Enemy forces are charging up the hill and it is necessary for the crew to spring into action. Angling the mortar at an angle of
θ
=
49.0
∘
(as shown), the crew fires the shell at a muzzle velocity of
156
ft/s.


How far
d
down the hill does the shell strike if the hill subtends an angle
ϕ
=
41.0
∘
from the horizontal? Ignore air friction.

A coordinate system is centered on a point at the top of a hill. A velocity vector of magnitude v subscript zero extends from the origin of the coordinate system and makes a counterclockwise angle theta with the positive horizontal axis. The hill slopes downward from the origin, and the slope makes a clockwise angle phi with the positive horizontal axis. A parabolic trajectory shows that the shell lands a distance d downhill, measured along the length of the slope.
d
=


m

How long will the mortar shell remain in the air?
time:

s

How fast will the shell be traveling when it hits the ground?
speed:

m
/
s
Physics
1 answer:
Elena-2011 [213]3 years ago
5 0

1) Distance down the hill: 1752 ft (534 m)

2) Time of flight of the shell: 12.9 s

3) Final speed: 326.8 ft/s (99.6 m/s)

Explanation:

1)

The motion of the shell is a projectile motion, so we  can analyze separately its vertical motion and its horizontal motion.

The vertical motion of the shell is a uniformly accelerated motion, so the vertical position is given by the following equation:

y=(u sin \theta)t-\frac{1}{2}gt^2 (1)

where:

u sin \theta is the initial vertical velocity of the shell, with u=156 ft/s and \theta=49.0^{\circ}

g=32 ft/s^2 is the acceleration of gravity

At the same time, the horizontal motion of the shell is a uniform motion, so the horizontal position of the shell at time t is given by the equation

x=(ucos \theta)t

where u cos \theta is the initial horizontal velocity of the shell.

We can re-write this last equation as

t=\frac{x}{u cos \theta} (1b)

And substituting into (1),

y=xtan\theta -\frac{1}{2}gt^2 (2)

where we have choosen the top of the hill (starting position of the shell) as origin (0,0).

We also know that the hill goes down with a slope of \alpha=-41.0^{\circ} from the horizontal, so we can write the position (x,y) of the hill as

y=x tan \alpha (3)

Therefore, the shell hits the slope of the hill when they have same x and y coordinates, so when (2)=(3):

xtan\alpha = xtan \theta - \frac{1}{2}gt^2

Substituting (1b) into this equation,

xtan \alpha = x tan \theta - \frac{1}{2}g(\frac{x}{ucos \theta})^2\\x (tan \theta - tan \alpha)-\frac{g}{2u^2 cos^2 \theta} x^2=0\\x(tan \theta - tan \alpha-\frac{gx}{2u^2 cos^2 \theta})=0

Which has 2 solutions:

x = 0 (origin)

and

tan \theta - tan \alpha=\frac{gx}{2u^2 cos^2 \theta}=0\\x=(tan \theta - tan \alpha) \frac{2u^2 cos^2\theta}{g}=1322 ft

So, the distance d down the hill at which the shell strikes the hill is

d=\frac{x}{cos \alpha}=\frac{1322}{cos(-41.0^{\circ})}=1752 ft=534 m

2)

In order to find how long the mortar shell remain in the air, we can use the equation:

t=\frac{x}{u cos \theta}

where:

x = 1322 ft is the final position of the shell when it strikes the hill

u=156 ft/s is the initial velocity of the shell

\theta=49.0^{\circ} is the angle of projection of the shell

Substituting these values into the equation, we find the time of flight of the shell:

t=\frac{1322}{(156)(cos 49^{\circ})}=12.9 s

3)

In order to find the final speed of the shell, we have to compute its horizontal and vertical velocity first.

The horizontal component of the velocity is constant and it is

v_x = u cos \theta =(156)(cos 49^{\circ})=102.3 ft/s

Instead, the vertical component of the velocity is given by

v_y=usin \theta -gt

And substituting at t = 12.9 s (time at which the shell strikes the hill),

v_y=(156)(cos 49^{\circ})-(32)(12.9)=-310.4ft/s

Therefore, the  final speed of the shell is:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(102.3)^2+(-310.4)^2}=326.8 ft/s=99.6 m/s

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

You might be interested in
A research submarine has a 30-cm-diameter window that is 8.1 cm thick. The manufacturer says the window can withstand forces up
malfutka [58]

The pressure at a certain depth underwater is:

P = ρgh

P = pressure, ρ = sea water density, g = gravitational acceleration near Earth, h = depth

The pressure exerted on the submarine window is:

P = F/A

P = pressure, F = force, A = area

The area of the circular submarine window is:

A = π(d/2)²

A = area, d = diameter

Set the expressions for the pressure equal to each other:

F/A = ρgh

Substitute A:

F/(π(d/2)²) = ρgh

Isolate h:

h = F/(ρgπ(d/2)²)

Given values:

F = 1.1×10⁶N

ρ = 1030kg/m³ (pulled from a Google search)

g = 9.81m/s²

d = 30×10⁻²m

Plug in and solve for h:

h = 1.1×10⁶/(1030(9.81)π(30×10⁻²/2)²)

h = 1540m

5 0
3 years ago
Which one of the following scenarios accurately describes a condition in which resonance can occur? A. A vibrating tuning fork i
Digiron [165]
I believe the answer is A
5 0
3 years ago
The energy from 0.015 moles of octane was used to heat 250 grams of water. The temperature of the water rose from 293.0 K to 371
arsen [322]

Answer : The correct option is, (B) -5448 kJ/mol

Explanation :

First we have to calculate the heat required by water.

q=m\times c\times (T_2-T_1)

where,

q = heat required by water = ?

m = mass of water = 250 g

c = specific heat capacity of water = 4.18J/g.K

T_1 = initial temperature of water = 293.0 K

T_2 = final temperature of water = 371.2 K

Now put all the given values in the above formula, we get:

q=250g\times 4.18J/g.K\times (371.2-293.0)K

q=81719J

Now we have to calculate the enthalpy of combustion of octane.

\Delta H=\frac{q}{n}

where,

\Delta H = enthalpy of combustion of octane = ?

q = heat released = -81719 J

n = moles of octane = 0.015 moles

Now put all the given values in the above formula, we get:

\Delta H=\frac{-81719J}{0.015mole}

\Delta H=-5447933.333J/mol=-5447.9kJ/mol\approx -5448kJ/mol

Therefore, the enthalpy of combustion of octane is -5448 kJ/mol.

5 0
3 years ago
A 35kg cannonball sits at rest on a flat level surface. What is the normal force exerted on the cannon ball. Use -9.8 m/s2 for a
Tom [10]

Answer:

a) N = 343 [N]

Explanation:

We must remember Newton's third law, which tells us that the force acting on a body is equal to the normal reaction force of equal magnitude but acting in the opposite direction.

N=m*g

where:

m = mass = 35 [kg]

g = gravity acceleration = 9.81 [m/s²]

N = 35*9.8\\N= 343 [N]

8 0
3 years ago
A dandelion seed floats to the ground in a mild wind with a resultant velocity of 26.0 cm/s. If the horizontal component velocit
stira [4]

Answer:

24 cm/s

Explanation:

Applying

Pythagoras theorem,

a² = b²+c²............. Equation 1

Where a = resultant, b = vertical component, c = horizontal component

From the question,

Given: a = 26 cm/s, c = 10 cm/s

Substitute these values into equation 1

26² = b²+10²

676 = b²+100

b² = 676-100

b² = 576

b = √576

b = 24 cm/s

7 0
3 years ago
Other questions:
  • HELP PLEASE! THANKS!!
    11·2 answers
  • In a science fiction novel two enemies, Bonzo and Ender, are fighting in outer spce. From stationary positions, they push agains
    5·1 answer
  • What is the net force of this object? A. 400 newtons B. 200 newtons C. 0 newtons D. 600 newtons @Dexteright02
    15·1 answer
  • A satellite orbits the earth a distance of 1.50 × 107 m above the planet's surface and takes 8.65 hours for each revolution abou
    11·1 answer
  • I have 15 minutes left to answer someone pls help, thank you very much.
    7·1 answer
  • Two large parallel conducting plates are 8.0 cm apart and carry equal but opposite charges on their facing surfaces. The magnitu
    13·1 answer
  • A phonograph turntable rotating at 33 1 3 rev/min slows down and stops in 1.98 min. (Assume the turntable initially rotates in t
    8·1 answer
  • The particle in the atom with a negative charge is the ______<br> Answer here
    13·2 answers
  • A baseball is thrown a distance of 20 m what is its speed if it takes 0.5 seconds to cover the distance
    12·1 answer
  • PLS HELP THIS IS WORTH 180 PTS!!(PLUS I WILL MARK BRAINIEST IF SOMEONE ANSWERS CORRECTY FIRST)
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!