1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Illusion [34]
3 years ago
10

A mortar is like a small cannon that launches shells at steep angles. A mortar crew is positioned near the top of a steep hill.

Enemy forces are charging up the hill and it is necessary for the crew to spring into action. Angling the mortar at an angle of
θ
=
49.0
∘
(as shown), the crew fires the shell at a muzzle velocity of
156
ft/s.


How far
d
down the hill does the shell strike if the hill subtends an angle
ϕ
=
41.0
∘
from the horizontal? Ignore air friction.

A coordinate system is centered on a point at the top of a hill. A velocity vector of magnitude v subscript zero extends from the origin of the coordinate system and makes a counterclockwise angle theta with the positive horizontal axis. The hill slopes downward from the origin, and the slope makes a clockwise angle phi with the positive horizontal axis. A parabolic trajectory shows that the shell lands a distance d downhill, measured along the length of the slope.
d
=


m

How long will the mortar shell remain in the air?
time:

s

How fast will the shell be traveling when it hits the ground?
speed:

m
/
s
Physics
1 answer:
Elena-2011 [213]3 years ago
5 0

1) Distance down the hill: 1752 ft (534 m)

2) Time of flight of the shell: 12.9 s

3) Final speed: 326.8 ft/s (99.6 m/s)

Explanation:

1)

The motion of the shell is a projectile motion, so we  can analyze separately its vertical motion and its horizontal motion.

The vertical motion of the shell is a uniformly accelerated motion, so the vertical position is given by the following equation:

y=(u sin \theta)t-\frac{1}{2}gt^2 (1)

where:

u sin \theta is the initial vertical velocity of the shell, with u=156 ft/s and \theta=49.0^{\circ}

g=32 ft/s^2 is the acceleration of gravity

At the same time, the horizontal motion of the shell is a uniform motion, so the horizontal position of the shell at time t is given by the equation

x=(ucos \theta)t

where u cos \theta is the initial horizontal velocity of the shell.

We can re-write this last equation as

t=\frac{x}{u cos \theta} (1b)

And substituting into (1),

y=xtan\theta -\frac{1}{2}gt^2 (2)

where we have choosen the top of the hill (starting position of the shell) as origin (0,0).

We also know that the hill goes down with a slope of \alpha=-41.0^{\circ} from the horizontal, so we can write the position (x,y) of the hill as

y=x tan \alpha (3)

Therefore, the shell hits the slope of the hill when they have same x and y coordinates, so when (2)=(3):

xtan\alpha = xtan \theta - \frac{1}{2}gt^2

Substituting (1b) into this equation,

xtan \alpha = x tan \theta - \frac{1}{2}g(\frac{x}{ucos \theta})^2\\x (tan \theta - tan \alpha)-\frac{g}{2u^2 cos^2 \theta} x^2=0\\x(tan \theta - tan \alpha-\frac{gx}{2u^2 cos^2 \theta})=0

Which has 2 solutions:

x = 0 (origin)

and

tan \theta - tan \alpha=\frac{gx}{2u^2 cos^2 \theta}=0\\x=(tan \theta - tan \alpha) \frac{2u^2 cos^2\theta}{g}=1322 ft

So, the distance d down the hill at which the shell strikes the hill is

d=\frac{x}{cos \alpha}=\frac{1322}{cos(-41.0^{\circ})}=1752 ft=534 m

2)

In order to find how long the mortar shell remain in the air, we can use the equation:

t=\frac{x}{u cos \theta}

where:

x = 1322 ft is the final position of the shell when it strikes the hill

u=156 ft/s is the initial velocity of the shell

\theta=49.0^{\circ} is the angle of projection of the shell

Substituting these values into the equation, we find the time of flight of the shell:

t=\frac{1322}{(156)(cos 49^{\circ})}=12.9 s

3)

In order to find the final speed of the shell, we have to compute its horizontal and vertical velocity first.

The horizontal component of the velocity is constant and it is

v_x = u cos \theta =(156)(cos 49^{\circ})=102.3 ft/s

Instead, the vertical component of the velocity is given by

v_y=usin \theta -gt

And substituting at t = 12.9 s (time at which the shell strikes the hill),

v_y=(156)(cos 49^{\circ})-(32)(12.9)=-310.4ft/s

Therefore, the  final speed of the shell is:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(102.3)^2+(-310.4)^2}=326.8 ft/s=99.6 m/s

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

You might be interested in
Using the
xxMikexx [17]

Answer:

The principle of momentum conservation states that if there no external force the total momentum of the system before and after the collision is conserved.

Since momentum is a vector, we should investigate the directions and magnitudes of initial and final momentum.

\vec{P}_{initial} = \vec{P}_{final}\\\vec{P}_{initial} = m_1\vec{v}_1 + 0\\\vec{P}_{final} = m_1\vec{v}_1' + m_2 \vec{v}_2'

If the first ball hits the second ball with an angle, we should separate the x- and y-components of the momentum (or velocity), and apply conservation of momentum separately on x- and y-directions.

6 0
2 years ago
What is the equation for frequency, wavelength, and speed of a wave?
Nastasia [14]

Answer:

       λ = v/f

Explanation:

frequency=f

wavelength = λ

speed of a wave=v

7 0
3 years ago
Why is plate tectonics a widely accepted theory?
MariettaO [177]

Answer: The theory of Plate Tectonics is now widely accepted because there is sufficient proof to support it, and it is an important aspect of geology, oceanography, geophysics and even paleontology.

Explanation: In places where a plate faced resistance to its movement, it would fold upward and create mountains. Hope this helped! :)

6 0
3 years ago
An electric grinder uses a grinding wheel
luda_lava [24]
(1500 rev/min)(min / 60 s) / (3.0 s) = 8.33 rev/s² 

<span>(B) </span>
<span>(1/2)(8.33 rev/s²)(3.0 s)² = 37.5 rev </span>

<span>(C) </span>
<span>(1500 rev/min)(min / 60 s)[2π(0.12 m) / rev] = 18.8 m/s</span>
3 0
2 years ago
Read 2 more answers
4. Calculate the total resistance for two 180 ohm resistors connected in<br> parallel
solmaris [256]

Answer:

90 ohms

Explanation:

1/r = 1/180 + 1/180

1/r= 2/180

take the reciprocal of 2/180 which is 180/2 and its 90 ohms

3 0
3 years ago
Other questions:
  • What causes the sodium channels to open successively?
    14·1 answer
  • Which of the following is a disadvantage of radio?
    11·1 answer
  • What is the actual land form of a shield volcano?<br><br> PLEASE HELP
    10·2 answers
  • This diagram shows a process the power stars. This process is called
    10·2 answers
  • describe the difference between a physical and a chemical change and explain what happens during a chemical reaction
    12·1 answer
  • How do the molecules of cold water differ from the molecules of hot water?
    14·2 answers
  • Imagine that a machine enables you to do 100 joules of work with a force input of 20 newtons. Now imagine that a new machine is
    5·1 answer
  • Question 2 Multiple Choice Worth 2 points)
    14·1 answer
  • Dolphins communicate using compression waves (longitudinal waves).  Some of the sounds dolphins make are outside the range of hu
    7·2 answers
  • The Sears Tower in Chicago is approximately 444 m tall Suppose a book
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!