Answer:
the answer would be microwelds.
Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping
<span>7.7 m/s
First, determine the acceleration you subject the sled to. You have a mass of 15 kg being subjected to a force of 180 N, so
180 N / 15 kg = 180 (kg m)/s^2 / 15 kg = 12 m/s^2
Now determine how long you pushed it. For constant acceleration the equation is
d = 0.5 A T^2
Substitute the known values getting,
2.5 m = 0.5 12 m/s^2 T^2
2.5 m = 6 m/s^2 T^2
Solve for T
2.5 m = 6 m/s^2 T^2
0.41667 s^2 = T^2
0.645497224 s = T
Now to get the velocity, multiply the time by the acceleration, giving
0.645497224 s * 12 m/s^2 = 7.745966692 m/s
After rounding to 2 significant figures, you get 7.7 m/s</span>
Ok so it usually includes the evaluation of symptom and disorder severity, patterns of symptoms over time number, frequency, and duration of episodes, and the patient's strengths and weaknesses.
Answer:
The same pendulum could be adjusted to have the same period, in the equator must have a length of 3.949m.
Explanation:
Tnp= 4 sec
gnp= 9.83 m/sec²
Lnp= 3.97m
Tequ= 4 sec
gequ= 9.78 m/sec²
Lequ=?
Lequ= (Lnp* gequ) / gnp
Lequ= 3.949 m