You can tell a lot about an object that's not moving,
and also a lot about the forces acting on it:
==> If the box is at rest on the table, then it is not accelerating.
==> Since it is not accelerating, I can say that the forces on it are balanced.
==> That means that the sum of all forces acting on the box is zero,
and the effect of all the forces acting on it is the same as if there were
no forces acting on it at all.
==> This in turn means that all of the horizontal forces are balanced,
AND all of the vertical forces are balanced.
Horizontal forces:
sliding friction, somebody pushing the box
All of the forces on this list must add up to zero. So ...
(sliding friction force) = (pushing force), in the opposite direction.
If nobody pushing the box, then sliding friction force = zero.
Vertical forces:
gravitational force (weight of the box, pulling it down)
normal force (table pushing the box up)
All of the forces on this list must add up to zero, so ...
(Gravitational force down) + (normal force up) = zero
(Gravitational force down) = -(normal force up) .
The displacement of the object as determined from the velocity-time graph is 562.5 m.
<h3>What is a velocity-time graph?</h3>
A velocity-time graph is a graph of the velocity of an object plotted in the vertical or y-axis of the graph against the time taken on the horizontal or x-axis.
The displacement of an object can be obtained from its velocity-time graph by calculating the total area under the graph.
The total area under the graph = area of triangle + area of rectangle
Area of triangle = b*h/2 =
Area of triangle = 25 * (35 - 10)/2 = 312.5 m
Area of rectangle = l * b
Area of rectangle = 10 * 25 = 250 m
Total area = (312.5 + 250) m
Total area = 562.5 m
Therefore, the displacement of the object is 562.5 m
In conclusion, the total area of a velocity-time graph gives the displacement.
Learn more about velocity-time graph at: brainly.com/question/28064297
#SPJ1
Explanation:
option A is the correct answer, if the gravitational acceleration is taken 10m/s²(rounding of 9.8/ms²).
hope this helps you.
82ohms
Explanation:
The equivalent resistance in the circuit is 82ohms
Given parameters:
R1 = 50ohms
R2 = 32ohms
Unknown:
Equivalent resistance = ?
Solution:
A resistor is an body in circuit that opposes the flow of electric current.
Resistors are usually connected in circuit and in series arrangement.
When resistors are connected in series, they have the same current passing through them.
Equivalent resistance is the sum of each of the connected resistors
Equivalent resistance = R1 + R2 = 50 + 32 = 82ohms
learn more:
Circuits brainly.com/question/2364338
#learnwithBrainly