<h2>
Hey There!</h2><h2>
_____________________________________</h2><h2>
Answer:</h2><h2>
----------------------------------------------------------------------</h2><h2>
ELECTROPLATING </h2>
Electroplating the plating one metal on to the another metal, It is mostly used for preventing corrosion by using copper or chromium or decorate the object by using gold or silver plating.
__________________________________________________________
<h3>Principle:</h3>
When electricity is passed the thin layer of metal is deposited on another metal and water molecule given out as a By-Product, Thus this process works on the principle of Hydrolysis.
<h2>_____________________________________</h2><h2>QUESTION:</h2>
A) Electrolysis
B) Chromium prevents corrosion and gives the fine shining touch to the objects.
C) The metal which is deposited to the object i.e. spoon will be connected to the positive electrode of a battery, Thus it is anode. The spoon at which electroplating is need to be done is connected to the negative electrode, thus the Spoon is cathode.
<h2>
_____________________________________</h2><h2>
Best Regards,</h2><h2>
'Borz'</h2>
So you have to multiply 786,3 times 0.98 to get the mass the mass is 770.57 if u round its 770.6 or 771
Answer:
16.6 mg
Explanation:
Step 1: Calculate the rate constant (k) for Iodine-131 decay
We know the half-life is t1/2 = 8.04 day. We can calculate the rate constant using the following expression.
k = ln2 / t1/2 = ln2 / 8.04 day = 0.0862 day⁻¹
Step 2: Calculate the mass of iodine after 8.52 days
Iodine-131 decays following first-order kinetics. Given the initial mass (I₀ = 34.7 mg) and the time elapsed (t = 8.52 day), we can calculate the mass of iodine-131 using the following expression.
ln I = ln I₀ - k × t
ln I = ln 34.7 - 0.0862 day⁻¹ × 8.52 day
I = 16.6 mg
Answer:
Don’t change, keep the same
Explanation: