Answer:D - adding a catalyst
Explanation:
Answer:
The correct answer is option C
Explanation:
According to Heisenberg's principle "At the instant of time when the position is determined, that is, at the instant when the photon is scattered by the electron, the electron undergoes a discontinuous change in momentum. This change is the greater the smaller the wavelength of the light employed, i.e., the more exact the determination of the position. At the instant at which the position of the electron is known, its momentum therefore can be known only up to magnitudes which correspond to that discontinuous change; thus, the more precisely the position is determined, the less precisely the momentum is known".
Hence, this principle made scientists to realize that electrons could not be located in defined orbits which a contradictory of Bohr's model.
Answer:The ideal gas law is represented mathematically as: PV=nRT. P- pressure, V- volume, n-number of moles of gas, R- ideal gas constant, T- temperature.
Explanation:The ideal gas law is used as a prediction of the behavior of many gases, when subjected to different conditions.
he ideal gas law has so many limitations.
An increase in the pressure or volume, decreases the number of moles and temperature of the gas.
Empirical laws that led to generation of the ideal gas laws, considered two variables and keeping the others constant. This empirical laws include, Boyle's law, Charles's law, Gay Lusaac's law and Avogadro's law.