The correct answer is option 1. Be, Mg, and Ca is the correct order arranged in increasing atomic radius. This is predicted based on the periodic table. The atomic sizes increases as one moves downwards in the periodic table.
Answer:

Explanation:
First, we need to find the molecular mass of water (H₂O).
H₂O has:
- 2 Hydrogen atoms (subscript of 2)
- 1 Oxygen atom (implied subscript of 1)
Use the Periodic Table to find the mass of hydrogen and oxygen. Then, multiply by the number of atoms of the element.
- Hydrogen: 1.0079 g/mol
- Oxygen: 15.9994 g/mol
There are 2 hydrogen atoms, so multiply the mass by 2.
- 2 Hydrogen: (1.0079 g/mol)(2)= 2.0158 g/mol
Now, find the mass of H₂O. Add the mass of 2 hydrogen atoms and 1 oxygen atom.
- 2.0158 g/mol + 15.9994 g/mol = 18.0152 g/mol
Next, find the amount of moles using the molecular mass we just calculated. Set up a ratio.

Multiply. The grams of H₂O will cancel out.



The original measurement given had two significant figures (3,2). We must round to have 2 significant figures. All the zeroes before the 1 are not significant. So, round to the ten thousandth.
The 7 in the hundred thousandth place tells us to round up.

There are about <u>0.0018 moles in 0.032 grams.</u>
To start, 1 cubic centimeter = 1 milliliter, so now you have 1.11g/mL.
Now multiply 1.11 by 387 to get the mass of antifreeze in grams, since the mL is canceled out.
387 mL x 1.11g/mL = 429.57 g
<span>oxidizing substance removes electrons from another substance, which are then added to itself, the oxidizing substance becomes “reduced” (more negative). And because it “accepts” electrons .</span>
Answer:
covalent bonds
Explanation:
ionic transfer of e^- ions formed (charges)
ionic=non-metal+ metal
ex: F+Ca
covalent sharing e^- no true charges
covalent= non-metal+ non-metal
ex: F+P
( my notes)