The complete question is missing, so i have attached the complete question.
Answer:
A) FBD is attached.
B) The condition that must be satisfied is for ω_min = √(g/r)
C) The tension in the string would be zero. This is because at the smallest frequency, the only radially inward force at that point is the weight(force of gravity).
Explanation:
A) I've attached the image of the free body diagram.
B) The formula for the net force is given as;
F_net = mv²/r
We know that angular velocity;ω = v/r
Thus;
F_net = mω²r
Now, the minimum downward force is the weight and so;
mg = m(ω_min)²r
m will cancel out to give;
g = (ω_min)²r
(ω_min)² = g/r
ω_min = √(g/r)
The condition that must be satisfied is for ω_min = √(g/r)
C) The tension in the string would be zero. This is because at the smallest frequency, the only radially inward force at that point is the weight(force of gravity).
The speed of something in any given direction.
Answer:
Gravity
Explanation:
Gravity is a force that pulls the surface of the earth and keeps the planets in orbits around the sun.
Answer:
56
Explanation:
I just want the points to be completely honest with you.