The sun <u><em>appears</em></u> brighter than any other star.
(It isn't really, but it looks that way because it's much much much much much much closer to us than any other star.)
Frictional force between the object and the floor=5 N
Explanation:
power= 50 W
velocity= 10 m/s
power= force * velocity
50=F * 10
F=50/10
F=5 N
Thus the force of friction= 5 N
Answer:
The maximum amount of work is
Explanation:
From the question we are told that
The temperature of the environment is 
The volume of container A is 
Initially the number of moles is 
The volume of container B is 
At equilibrium of the gas the maximum work that can be done on the turbine is mathematically represented as
Now from the Ideal gas law

So substituting for
in the equation above
![W = nRT ln [\frac{V_B}{V_A} ]](https://tex.z-dn.net/?f=W%20%3D%20%20nRT%20ln%20%5B%5Cfrac%7BV_B%7D%7BV_A%7D%20%5D)
Where R is the gas constant with a values of 
Substituting values we have that
Answer:
V' = 0.84 m/s
Explanation:
given,
Linear speed of the ball, v = 2.85 m/s
rise of the ball, h = 0.53 m
Linear speed of the ball, v' = ?
rotation kinetic energy of the ball

I of the moment of inertia of the sphere

v = R ω
using conservation of energy


Applying conservation of energy
Initial Linear KE + Initial roational KE = Final Linear KE + Final roational KE + Potential energy



V'² = 0.7025
V' = 0.84 m/s
the linear speed of the ball at the top of ramp is equal to 0.84 m/s
C..............................