1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lilavasa [31]
3 years ago
15

43

Physics
1 answer:
Inga [223]3 years ago
4 0

Answer is c, they are equal:

Explanation:

You might be interested in
A solution is prepared by dissolving 17.75 g sulfuric acid, h2so4, in enough water to make 100.0 ml of solution. if the density
Yuliya22 [10]

The solution of Sulfuric Acid (H2SO4) has the following mole fractions:

  • mole fraction (H2SO4)= 0.034
  • mole fraction (H2O)= 0.966

To solve this problem the formula and the procedure that we have to use is:

  • n = m / MW
  • = ∑ AWT
  • mole fraction = moles of A component / total moles of solution
  • ρ = m /v

Where:

  • m = mass
  • n = moles
  • MW = molecular weight
  • AWT = atomic weight
  • ρ = density
  • v = volume

Information about the problem:

  • m solute (H2SO4) = 17.75 g
  • v(solution) = 100 ml
  • ρ (solution)= 1.094 g/ml
  • AWT (H)= 1 g/mol
  • AWT (S) = 32 g/mol
  • AWT (O)= 16 g/mol
  • mole fraction(H2SO4) = ?
  • mole fraction(H2O) = ?

We calculate the moles of the H2SO4 and of the H2O from the Pm:

MW = ∑ AWT

MW (H2SO4)= AWT (H) * 2 + AWT (S) + AWT (O) * 4

MW (H2SO4)= (1 g/mol * 2) + (32,064 g/mol) + (16 g/mol * 4)

MW (H2SO4)= 2 g/mol + 32 g/mol + 64 g/mol

MW (H2SO4)=  98 g/mol

MW (H2O)= AWT (H) * 2 + AWT (O)

MW (H2O)= (1 g/mol * 2) + (16 g/mol)

MW (H2O)= 2 g/mol + 16 g/mol

MW (H2O)=  18 g/mol

Having the Pm we calculate the moles of H2SO4:

n = m / MW

n(H2SO4) = m(H2SO4) / MW (H2SO4)

n(H2SO4) = 17.75 g / 98 g/mol

n(H2SO4) = 0.1811 mol

With the density and the volume of the solution we get the mass:

ρ(solution)= m(solution) /v(solution)

m(solution) = v(solution) * ρ(solution)

m(solution) = 100 ml * 1.094 g/ml

m(solution) = 109.4 g

Having the mass of the solution we calculate the mass of the water in the solution:

m(H2O) = m(solution) - m solute (H2SO4)

m(H2O) = 109.4 g - 17.75 g

m(H2O) = 91.65 g

We calculate the moles of H2O:

n = m / MW

n(H2O) = m(H2O) / MW (H2O)

n(H2O) = 91.65 g / 18 g/mol

n(H2O) = 5.092  mol

We calculate the total moles of solution:

total moles of solution = n(H2SO4) + n(H2O)

total moles of solution = 0.1811 mol + 5.092  mol

total moles of solution = 5.2731 mol

With the moles of solution we can calculate the mole fraction of each component:

mole fraction (H2SO4)= moles of (H2SO4) / total moles of solution

mole fraction (H2SO4)= 0.1811 mol / 5.2731 mol

mole fraction (H2SO4)= 0.034

mole fraction (H2O)= moles of (H2O) / total moles of solution

mole fraction (H2O)= 5.092  mol / 5.2731 mol

mole fraction (H2O)= 0.966

<h3>What is a solution?</h3>

In chemistry a solution is known as a homogeneous mixture of two or more components called:

  • Solvent
  • Solute

Learn more about chemical solution at: brainly.com/question/13182946 and brainly.com/question/25326161

#SPJ4

8 0
2 years ago
What happens to the particles of a liquid when energy is removed from them?
KonstantinChe [14]

Answer:

D: The distance between the particles decreases

Explanation:

Taking away energy slows down molecules, like how you slow down when you are cold (I think)

3 0
3 years ago
A 12kg cheetah accelerates 24 m/s". What is the force the cheetah needed to run?
Kobotan [32]

Answer:

288N

Explanation:

Given parameters:

Mass of Cheetah = 12kg

Acceleration  = 24m/s²

Unknown:

Force needed by the cheetah to run  = ?

Solution:

The force needed by the Cheetah to run is the net force.

According to Newton's law;

    Force  = mass x acceleration

Insert the given parameters and solve;

   Force  = 12 x 24  = 288N

7 0
3 years ago
In a single replacement reaction, what will a metal always replace?
Alexandra [31]
A metal have a nice day
8 0
3 years ago
Read 2 more answers
A thin taut string is fixed at both ends and stretched along the horizontal x-axis with its left end at x = 0. It is vibrating i
Fofino [41]

Answer:

(a) Wavelength is 0.436 m

(b) Length is 0.872 m

(c) 11.518 m/s

Solution:

As per the question:

The eqn of the displacement is given by:

y(x, t) = (1.22 cm)sin[14.4 m^{- 1}x]cos[(166\ rad/s)t]          (1)

n = 4

Now,

We know the standard eqn is given by:

y = AsinKxcos\omega t           (2)

Now, on comparing eqn (1) and (2):

A = 1.22 cm

K = 14.4 m^{- 1}

\omega = 166\ rad/s

where

A = Amplitude

K = Propagation constant

\omega = angular velocity

Now, to calculate the string's wavelength,

(a) K = \frac{2\pi}{\lambda}

where

K = propagation vector

\lambda = \frac{2\pi}{K}

\lambda = \frac{2\pi}{14.4} = 0.436\ m

(b) The length of the string is given by:

l = \frac{n\lambda}{2}

l = \frac{4\times 0.436}{2} = 0.872\ m

(c)  Now, we first find the frequency of the wave:

\omega = 2\pi f

f = \frac{\omega}{2\pi}

f = \frac{2\pi}{166} = 26.42\ Hz

Now,

Speed of the wave is given by:

v = f\lambda

v = 26.419\times 0.436 = 11.518\ m/s

4 0
3 years ago
Other questions:
  • Which component is found only in electric generators and not in electric motors?
    8·2 answers
  • why does light look colorless and how is made (I know this just Wana see if anyone will get it correct )
    12·1 answer
  • How can people control sound?
    7·2 answers
  • A 4.0-n puck is traveling at 3.0 m/s. it strikes an 8.0-n puck, which is stationary. the two pucks stick together. their common
    8·1 answer
  • A string is wrapped several times around the rim of a small hoop with radius 7cm and mass 2kg. The free end of the string is hel
    8·1 answer
  • During the stage of internal combustion engine operation in which the piston rises and compresses the fuel in the combustion cha
    6·2 answers
  • Why can the Hubble space telescope make very detailed images in visible light
    5·1 answer
  • A conditioning program should begin at a low to moderate level. True or False
    13·1 answer
  • Explain how the mass of a planet affects the motion of the planet around the sun?
    14·1 answer
  • An air bubble is at a depth of 3 m below
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!