This problem is to let you practice using Newton's second law of motion:
Force = (mass) x (acceleration)
-- The airplane's mass when it takes off (before it burns any of its load of fuel) is 320,000 kg.
-- The force available is (240,000 N/per engine) x (4 engines) = 960,000 N.
-- Now you know ' F ' and ' mass '. Use Newton's second law of motion to calculate the plane's acceleration.
Mechanical advantage is the ratio of output force to input force of a machine.
hope this helps and have a great day :)
Answer:
The object is dropped, we know the initial velocity is zero. Once the object has left contact with whatever held or threw it, the object is in free-fall. Under these circumstances, the motion is one-dimensional and has constant acceleration of magnitude g.
No so sure
Explanation:
Hope it helps
Answer:
A is the answer. Im only 12 and i hope this explanation helps you.
Explanation:
Lenz's Law of Electromagnetic Induction. Faraday's Law tells us that inducing a voltage into a conductor can be done by either passing it through a magnetic field, or by moving the magnetic field past the conductor and that if this conductor is part of a closed circuit, an electric current will flow.
Answer:
A. If the sum of the external forces on an object is zero, then the object must be in equilibrium
Explanation:
Equilibrium, in physics, the condition of a system when neither its state of motion nor its internal energy state tends to change with time.
For a single particle, equilibrium arises if the vector sum of all forces acting upon the particle is zero.
the object is at equilibrium, then the net force acting upon the object should be 0 Newton. Thus, if all the forces are added together as vectors, then the resultant force (the vector sum) should be 0 Newton.
There are three types of equilibrium: stable, unstable, and neutral