Answer:
So, this is not the answer because I suck like that (hehe >:3) but here's some helps.
Explanation:
1. The magnitude of the net force acting on an object is equal to the mass of the object multiplied by the acceleration of the object as shown in the formula below.
2. If the net force acting on an object is zero, then the object is not accelerating, and is in a state known as equilibrium.
3. This will be were you use the info I gave to figure it out. I hope this wasn't completely unhelpful.
Because there's no such thing as "really" moving.
ALL motion is always relative to something.
Here's an example:
You're sitting in a comfy cushy seat, reading a book and listening
to your .mp3 player, and you're getting drowsy. It's so warm and
comfortable, your eyes are getting so heavy, finally the book slips
out of your hand, falls into your lap, and you are fast asleep.
-- Relative to you, the book is not moving at all.
-- Relative to the seat, you are not moving at all.
-- Relative to the wall and the window, the seat is not moving at all.
-- But your seat is in a passenger airliner. Relative to people on the
ground, you are moving past them at almost 500 miles per hour !
-- Relative to the center of the Earth, the people on the ground are moving
in a circle at more than 700 miles per hour.
-- Relative to the center of the Sun, the Earth and everything on it are moving
in a circle at about 66,700 miles per hour !
How fast are they REALLY moving ?
There's no such thing.
It all depends on what reference you're using.
Explanation:
For this problem, use the first law of thermodynamics. The change in energy equals the increase in heat energy minus the work done.
ΔU=Q−W
We are not given a value for work, but we can solve for it using the force and distance. Work is the product of force and displacement.
W=FΔx
W=3N×2m
W=6J
Now that we have the value of work done and the value for heat added, we can solve for the total change in energy.
ΔU=Q−W
ΔU=10J−6J
ΔU=4J
Answer is 4J
i think this may help you very much
I believe another name for lower point is Ice point
Soft target by impact and its contribution to indirect bone fractures.