In order to measure the resistance in the circuit, we need to know the voltage V and the current I in the circuit, this way we can calculate the resistance using the formula:

In order to calculate the current, we can use an amperemeter that must be in series with the circuit, this way it will not affect the circuit.
And in order to calculate the voltage, we can use a voltmeter that must be in parallel with the resistance, this way it will not affect the circuit.
The correct option that shows an amperemeter in series and a voltmeter in parallel is the fourth option.
Answer:
Answer was deleted first time, the answer is 917 N
Explanation:
Hope this helps!
<span>Scientific theories are tested and proven over time; they are then considered scientific laws.
Sometimes however, they are proven wrong, and so they do not become laws
hope this helps</span>
The question is incomplete. The mass of the object is 10 gram and travelling at a speed of 2 m/s.
Solution:
It is given that mass of object before explosion is,m = 10 g
Speed of object before explosion, v = 2 m/s
Let
be the masses of the three fragments.
Let
be the velocities of the three fragments.
Therefore, according to the law of conservation of momentum,


So the x- component of the velocity of the m2 fragment after the explosion is,

∴ 
Answer:

Explanation:
A 6.0-cm-diameter parallel-plate capacitor has a 0.46 mm gap.
What is the displacement current in the capacitor if the potential difference across the capacitor is increasing at 500,000V/s?
Let given is,
The diameter of a parallel plate capacitor is 6 cm or 0.06 m
Separation between plates, d = 0.046 mm
The potential difference across the capacitor is increasing at 500,000 V/s
We need to find the displacement current in the capacitor. Capacitance for parallel plate capacitor is given by :
, r is radius
Let I is the displacement current. It is given by :

Here,
is rate of increasing potential difference
So

So, the value of displacement current is
.