Answer:
184.46
Explanation:
(84.7°c x 9/5)+32=184.46 °F
1 molecule of NH3 has 3 atoms of H.
6.90*10²⁴ molecules NH3 have 3*6.90*10²⁴ =20.7*10²⁴ atoms H=2.07*10²⁵ atoms H
1 molecule H2O of has 2 atoms of H.
2.60*10²⁵ molecules of H2O have 2*2.60*10²⁵ =5.20 *10²⁵ atoms of H
2.07*10²⁵ + 5.20 *10²⁵ =7.27*10²⁵ atoms of H altogether.
Answer:
1. 3.70 g Na₂CO₃·10H₂O
2. 50.0 mL of the first solution
Explanation:
1. Prepare the solution
(a) Calculate the molar mass of Na₂CO₃·10H₂O

The molar mass of Na₂CO₃·10H₂O is 286.15 g/mol.
(b) Calculate the moles of Na₂CO₃·10H₂O

(c) Calculate the mass of Na₂CO₃·10H₂O

2. Dilute the solution
We can use the dilution formula to calculate the volume needed.
V₁c₁ = V₂c₂
Data:
V₁ = ?; c₁ = 0.0500 mol·L⁻¹
V₂ = 100 mL; c₂ = 0.0250 mol·L⁻¹
Calculation:

C. losing one electron
Explanation:
It is because the potassium atom electronic configuration is 2,8,8,1 where by if it loses one electron it becomes stable
Answer:
I think that is the literal answer