The longer you spend reading and thinking about this question,
the more defective it appears.
-- In each case, the amount of work done is determined by the strength
of
the force AND by the distance the skateboard rolls <em><u>while you're still
</u></em>
<em><u>applying the force</u>. </em>Without some more or different information, the total
distance the skateboard rolls may or may not tell how much work was done
to it.<em>
</em>
-- We know that the forces are equal, but we don't know anything about
how far each one rolled <em>while the force continued</em>. All we know is that
one force must have been removed.
-- If one skateboard moves a few feet and comes to a stop, then you
must have stopped pushing it at some time before it stopped, otherwise
it would have kept going.
-- How far did that one roll while you were still pushing it ?
-- Did you also stop pushing the other skateboard at some point, or
did you stick with that one?
-- Did each skateboard both roll the same distance while you continued pushing it ?
I don't think we know enough about the experimental set-up and methods
to decide which skateboard had more work done to it.
the focal length <span> is much more decent for a concave, and also worse</span><span> for a convex mirror. When the image that is given, distance is good and decent, images are always on the same area of the mirror as the object given , and it is not fake. images distance is </span>never positive <span>, the image is on the oppisite side of the mirror, so the image must be virtual.</span>
Answer: D
Height of marble from ground
Explanation:
From the formula of kinetic energy and potential energy,
K.E = 1/2mv^2
While
P.E = mgh
From all the parameters given from the question. You can see that mass is constant, acceleration due to gravity is also constant.
Independent variable must be a value that can varies.
Since Jack rolled a marble down a ramp and recorded the potential energy and kinetic energy of the marble at different positions on the ramp to see the effects on both energies.
This different position must be the height which will produce an effect on the potential and kinetic energy of the marble.
Independent variable always provides an effect for dependent variable. Which are kinetic energy and potential energy in this case.
Height of marble from ground is the right answer.
The correct answer is: wavelength =
4562 nm
Explanation:Rydberg's formula is given as:
![\frac{1}{\lambda} = R[ \frac{1}{n_1^2} - \frac{1}{n_2^2} ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5Clambda%7D%20%3D%20R%5B%20%5Cfrac%7B1%7D%7Bn_1%5E2%7D%20%20-%20%5Cfrac%7B1%7D%7Bn_2%5E2%7D%20%5D%20)
--- (1)
Where
R = Rydberg's constant = 1.096 * 10^7 per meter

= 5

= 7
λ = Wavelength
Plug in the values in (1):
(1)=>
![\frac{1}{\lambda} = (1.096 * 10^7)[ \frac{1}{5^2} - \frac{1}{7^2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%7D%20%3D%20%281.096%20%2A%2010%5E7%29%5B%20%5Cfrac%7B1%7D%7B5%5E2%7D%20-%20%5Cfrac%7B1%7D%7B7%5E2%7D%20%5D)