Answer:
K = 960 J
Explanation:
Given that,
Mass of a child = 20 kg
Mass of a sled = 10 kg
Speed of child on sled = 8 m/s
We need to find the kinetic energy of the sled with the child.
The total mass of child and the sled = 20 kg + 10 kg
= 30 kg
The formula for the kinetic energy of an object is given by :

Hence, the kinetic energy of the sled with the child is 960 J.
Answer:
Weight of the woman in Newton

Mass of the woman in slug

Mass of the woman in kg

My weight in Newton

Explanation:
From the question we are told that
The weight of the woman in pounds is 
Converting to Newton
1 N = 0.22472 lb
x N = 157
=> 
=> 
Obtaining the mass in slug

Here 
So


Obtaining the mass in kilogram

Here 
So


Generally weight is mathematically represented as

Given that my mass is 80 kg then my weight is


That depends on how soon you want it to reach 5 m/s/s. Without friction, ANY force will accelerate the car, like a mosquito pushing on it, but a Space Shuttle booster will accelerate it at a greater rate.
Answer:
The magnetic field strength due to current flowing in the wire is9.322 x 10⁻⁶ T.
Explanation:
Given;
electric current, I = 21.3 A
distance of the magnetic field from the wire, R = 45.7 cm = 0.457 m
The strength of the resulting magnetic field at the given distance is calculated as;

Where;
μ₀ is permeability of free space = 4π x 10⁻⁷ T.m/A

Therefore, the magnetic field strength due to current flowing in the wire is 9.322 x 10⁻⁶ T.
Answer:
The mass of the astronaut is approximately 119.74 kg
Explanation:
Assuming this problem as a Simple Harmonic Motion of a mass-spring system, the period (T) of the oscillations for a mass (m) and spring constant (k) is:
(1)
First, we have to calculate the spring constant using equation (1) and the data provided for the oscillations without the astronaut:
<em>(it’s important to note that one complete vibration is the period of the movement)</em>


Now with the value of k, we can use again (1) to find the mass of the astronaut (Ma) that makes the period to be 2.54 seconds

