Answer:
Explanation:
Given
mass of tree stump is 
mass bullet is 
velocity of bullet is 
Conserving momentum for bullet and tree stump
Initial Momentum 
Suppose
is the velocity of the system
Final Momentum 
Initial momentum =Final Momentum


Answer:
Time = 2758.62 seconds
Explanation:
Given the following data;
Speed = 290 m/s
Distance = 800 km to meters = 800 * 1000 = 800000
To find the time;
Time = distance/speed
Time = 800000/290
Time = 2758.62 seconds
Therefore, it will take the pilot 2758.62 seconds to reach the airport.
I am going to assume 2.1 metres per second and that we're rounding acceleration due to gravity to -10 metres per second squared. At the highest point, velocity is going to be 0. v= intial velocity + acceleration*time, sub in 0 for velocity, 2.1 for initial velocity and -10 for acceleration to get 0= 2.1-10t. Now solve for t. t=0.21 seconds.
The equation of state for an ideal gas is

where p is the gas pressure, V the volume, n the number of moles, R the gas constant and T the temperature.
The equation of state for the initial condition of the gas is

(1)
While the same equation for the final condition is

(2)
We know that in the final condition, half of the mass of the gas is escaped. This means that the final volume of the gas is half of the initial volume, and also that the final number of moles is half the initial number of moles, so we can write:


If we substitute these relationship inside (1), and we divide (1) by (2), we get

And since the initial temperature of the gas is

, we can find the final temperature of the gas:
If she read 41 pocketbooks this month then she read last month=41-13=28