Explanation:
The second quantum number also called the orbital quantum number describes the type of orbital or shape of it.
Answer: D. The specific orbital within a sublevel.
Mass of aspirin = 0.025 g
Molar mass of C9H8O4 is 180.1583 g/mol
moles of aspirin = .025g / 180.1583 g/mol = 0.000138767 moles
volume solution = .250 L
molarity of the solution = 0.000138767 moles / .250L =5.551 x 10 ^-04 Moles / liter
for aspirin i = Vant'Hoff factor = 1 particle in solution
T = 25 + 273 =298 K
osmotic pressure = M x R x T x i =
5.551 x 10 ^-04 mole L -1 x 0.08206 L atm K−1 mol−1 x 298 K x 1 = 0.0136 atmospheres
Answer:
K = 137.55 atm/M.
Explanation:
- The relationship between gas pressure and the concentration of dissolved gas is given by Henry’s law:
<em>P = (K)(C)</em>
where P is the partial pressure of the gaseous solute above the solution (P = 1.0 atm).
k is a constant (Henry’s constant).
C is the concentration of the dissolved gas (C = 7.27 x 10⁻³ M).
∴ K = P/C = (1.0 atm)/(7.27 x 10⁻³ M) = 137.55 atm/M.
Answer:3.6 I think sorry if wrong
Explanation:
90 divided by 25
Answer:
Polymeric MDI is a mixture of. monomeric MDI as well as larger molecular weight oligomers of MDI, and is a brownish. liquid at room temperature and may have a slight odor. Commercial MDI products are. often mixtures of monomeric and polymeric MDI and can contain other additives as well.
Explanation: