Answer:
0.135 mole of H2.
Explanation:
We'll begin by calculating the number of mole in 3.24 g of Mg. This can be obtained as follow:
Mass of Mg = 3.24 g
Molar mass of Mg = 24 g/mol
Mole of Mg =?
Mole = mass /Molar mass
Mole of Mg = 3.24/24
Mole of Mg = 0.135 mole
Next, we shall write the balanced equation for the reaction. This is illustrated below:
Mg + 2HCl —> MgCl2 + H2
From the balanced equation above,
1 mole of Mg reacted to produce 1 mole of H2.
Finally, we shall determine the number of mole of H2 produced by reacting 3.24 g (i.e 0.135 mole) of Mg. This can be obtained as follow:
From the balanced equation above,
1 mole of Mg reacted to produce 1 mole of H2.
Therefore, 0.135 mole of Mg will also react to produce 0.135 mole of H2.
Thus, 0.135 mole of H2 can be obtained from the reaction.
Answer:
the name for NO is nitrogen monoxide
If this molecule is one half of a buffer, then the formula of the second half of the buffer is M2CrO4 where M is a univalent metal.
<h3>What is a strong acid?</h3>
A weak acid is one that is able to ionize completely in solution. The acid called chromic acid H2CrO4 is not able to ionize completely in solution.
We know that a buffer is composed of a weak acid and its salt or a weak base and its salt hence if the acid H2CrO4 is present in a buffer then the other half must be salt of the acid.
If this molecule is one half of a buffer, then the formula of the second half of the buffer is M2CrO4 where M is a univalent metal.
Learn more about buffer:brainly.com/question/22821585
#SPJ1