Increase in temperature makes the atoms speed up, and decrease in temperature makes the atoms move slower.
Answer:
A. The pressure will increase 4 times. P₂ = 4 P₁
B. The pressure will decrease to half its value. P₂ = 0.5 P₁
C. The pressure will decrease to half its value. P₂ = 0.5 P₁
Explanation:
Initially, we have n₁ moles of a gas that occupy a volume V₁ at temperature T₁ and pressure P₁.
<em>What would happen to the gas pressure inside the cylinder if you do the following?</em>
<em />
<em>Part A: Decrease the volume to one-fourth the original volume while holding the temperature constant. Express your answer in terms of the variable P initial.</em>
V₂ = 0.25 V₁. According to Boyle's law,
P₁ . V₁ = P₂ . V₂
P₁ . V₁ = P₂ . 0.25 V₁
P₁ = P₂ . 0.25
P₂ = 4 P₁
<em>Part B: Reduce the Kelvin temperature to half its original value while holding the volume constant. Express your answer in terms of the variable P initial.</em>
T₂ = 0.5 T₁. According to Gay-Lussac's law,

<em>Part C: Reduce the amount of gas to half while keeping the volume and temperature constant. Express your answer in terms of the variable P initial.</em>
n₂ = 0.5 n₁.
P₁ in terms of the ideal gas equation is:

P₂ in terms of the ideal gas equation is:

I think the answer is= simple/uses surrounding light source and is restricted in magnification.
compound uses an electrical light source but is restricted in magnification also. an electron microscope has electrical magnification and light source so you can see smaller cells when dyed the rt. color..plse double check, good luck..
D Hetero-tropic herbivore <span />
For 100m Race ,
displacement = distance covered .
divide the above equation by time t (assuming it takes t time to complete 100m race),
we get,
velocity = speed.
and for 400m race 1 lap is completed this means that racer's initial and final position coincide (or same) hence,
displacement = 0,
distance ≠0=400m.
=> displacement ≠distance.
=> velocity ≠ speed.