Delta E = Ef - Ei
E = energy , h = plank constant , v = frequency
h= 6.626 * 10 ^-34 j*s , T = 10 ^ 12 , v = 74 * 10 ^12 Hz , Hz = s^-1
E = ( 6.626 * 10^ -34 j*s) ( 74 * 10 ^ 12 s^ -1 ) = 4.90 * 10 ^ -20 J
Delta E = Ef - Ei
-4.90 * 10 ^ -20 J = -2.18 * 10 ^ -18J ( 1/4 ^2 - 1/x ^2)
0.0225 = 0.0625 - ( 1/x ^ 2)
0.225 - 0.0625 = - 1/ x ^ 2
- 0.0400 = - 1/x ^2 = -1 / - 0.0400 = x^2
25 = x^2
x = 5
Answer:
16 g/mol
Explanation:
In CO2, it means we have 1 mole of carbon and 2 moles of oxygen.
However, we want to find the molar mass of just a single mole of oxygen.
Now, from tables of values of elements in electronic configuration, the molar mass of oxygen is usually approximately 16 g/mol.
In essence the molar mass is simply the atomic mass in g/mol