Answer:
Solid
Explanation:
In solid there are strong intermolecular forces present as compared to liquid and gas. This is why solid are in more packed form as compared to liquid and gas. In liquid and gas intermolecular forces are week that's why molecules are away from each other and occupy more space.
Properties of gases:
Molecule of gases randomly move everywhere and occupy all available space.
Gases don't have definite volume and shape and take the shape and volume of container in which it present.
Their densities are very low as compared to the liquid and solids.
Gas molecules are at long distance from each other therefore by applying pressure gases can be compressed.
The very weak inter molecular forces are present between gas molecules.
Properties of Liquid:
Liquid have definite volume but don't have definite shape.
Their densities are high as compared to the gases but low as compared to the solids.
In liquid, molecules are close to each other and have greater inter molecular forces as compared to the gas molecules.
Properties of solids:
Solids have definite volume and shape.
In solids molecules are tightly pack and very close to each other.
Their melting and boiling point are every high.
The densities of solids are also very high as compared to the liquid and gas.
There are very strong inter molecular forces are present between solid molecules.
Answer:
It is a sigma bond
Explanation:
Chlorine has an electronic configuration of 1s2 2s2 2p6 3s2 3p5. This means that the outermost n=3 level has seven electrons. Hence one more electron is needed for the octet of outermost electrons to be achieved. As a result of this, chlorine enters into covalent bonding with another chlorine atom to form Cl2.
The outermost 3p electrons of the two chlorine atoms are now shared to form a p-p sigma bond (a single bond). Hence, the Cl2 molecule contains a sigma(single) bond between two chlorine atoms. Hence the answer written above.
Answer:
27) Double replacement
28) 2NaOH + H2SO4 --> Na2SO4 + 2H2O
Answer:
See explanation
Explanation:
All molecules possess the London dispersion forces. However London dispersion forces is the only kind of intermolecular interaction that exists in nonpolar substances.
So, the only kind of intermolecular interaction that exists in dimethyl ether is London dispersion forces.
As for ethyl alcohol, the molecule is polar due to the presence of polar O-H bond. In addition to London dispersion forces, dipole-dipole interactions and specifically hydrogen bonding also occurs between the molecules.
Because ethyl alcohol is polar, it is more soluble in water than dimethyl ether.
Answer:
2.82 L
T₁ = 303 K
T₂ = 263 K
The final volume is smaller.
Explanation:
Step 1: Given data
- Initial temperature (T₁): 30 °C
- Initial volume (V₁): 3.25 L
- Final temperature (T₂): -10 °C
Step 2: Convert the temperatures to Kelvin
We will use the following expression.
K = °C + 273.15
T₁: K = 30°C + 273.15 = 303 K
T₂: K = -10°C + 273.15 = 263 K
Step 3: Calculate the final volume of the balloon
Assuming constant pressure and ideal behavior, we can calculate the final volume using Charles' law. Since the temperature is smaller, the volume must be smaller as well.
V₁/T₁ = V₂/T₂
V₂ = V₁ × T₂/T₁
V₂ = 3.25 L × 263 K/303 K = 2.82 L