Complete Question
An airplane takes off a runway at a constant speed of 49 m/s at constant angle 30 to the horizontal.How high (in meters ) is the airplane above the ground 13 seconds after takeoff?
Answer:
The height is 
Explanation:
From the question we are told that
The speed at which the plane takes off is 
The angle at which it takes off is 
The time taken is 
The vertical distance traveled is mathematically represented as

Substituting values


Answer:
b.
Explanation:
i just finished a chapter about this
Question 4 is true, question 5 is B.
Answer:
Explanation:
We can use the conservation of the angular momentum.


Now the Inertia is I(professor_stool) plus mR², that is the momentum inertia of a hoop about central axis.
So we will have:

Now, we just need to solve it for ω.

I hope it helps you!
Answer:
Given values of Planck Constant are equivalent in English system and metric system.
Explanation:
Value of Planck's constant is given in English system as 4.14 x 10⁻¹⁵eV s.
Converting this in to metric system .
We have 1 eV = 1.6 x 10⁻¹⁹ J
Converting
4.14 x 10⁻¹⁵eV s = 4.14 x 10⁻¹⁵x 1.6 x 10⁻¹⁹ = 6.63 x 10⁻³⁴ Joule s
So Given values of Planck Constant are equivalent in English system and metric system.