Answer:
See the answers below
Explanation:
This problem and its respective questions can be easily solved using Newton's law of universal gravitation. Which can be calculated by means of the following expression.

where:
G = it is the universal gravitation constant. = 6.673 x 10⁻¹¹ [N*m²/kg²]
m1 = mass of the first body [kg]
m2 = mass of the second body [kg]
r = distance among the bodies [m]
a. the mass of one is doubled?
When this happens we see that the force is increased twice as well, since the mass is in the numerator of the expression.
b. The masses of both are doubled?
If both masses are doubled the force is increased to four times its original value since the terms of the masses are in the numerator of the expression.
c. The distance between them is doubled?
In this case the force is decreased to half of its original value, since the distance is in the denominator of the expression of universal gravitation.
Answer:
T = 99.51 hour
Explanation:
Mass of Uranus, 
The moon Umbriel orbits Uranus at a distance of 
We need to find Umbriel's orbital period. Let it is T. Using Kepler's third law of motion to find it.

As 1 hour = 3600 s
358244.51 s = 99.51 hour
Hence, Umbriel's orbital period is 99.51 hour.
Answer:
Yes. Walking is controlled falling because you need to let go in order to move forward. If you never let your foot fall, your movements would be stilted and robotic. And according to medical engineers," When we walk normally we are constantly correcting tiny falls to keep ourselves stable."
Explanation:
Answers:
a) 
b) 
c) 
Explanation:
<h3>a) Mass of the continent</h3>
Density
is defined as a relation between mass
and volume
:
(1)
Where:
is the average density of the continent
is the mass of the continent
is the volume of the continent, which can be estimated is we assume it as a a slab of rock 5300 km on a side and 37 km deep:

Finding the mass:
(2)
(3)
(4) This is the mass of the continent
<h3>b) Kinetic energy of the continent</h3>
Kinetic energy
is given by the following equation:
(5)
Where:
is the mass of the continent
is the velocity of the continent
(6)
(7) This is the kinetic energy of the continent
<h3>c) Speed of the jogger</h3>
If we have a jogger with mass
and the same kinetic energy as that of the continent
, we can find its velocity by isolating
from (5):
(6)
Finally:
This is the speed of the jogger