Answer:
Time take to fill the standing wave to the entire length of the string is 1.3 sec.
Explanation:
Given :
The length of the one end
, frequency of the wave
= 2.3 Hz, wavelength of the wave λ = 1 m.
Standing wave is the example of the transverse wave, standing wave doesn't transfer energy in a medium.
We know,
∴
λ
Where
speed of the standing wave.
also, ∴ 
where
time take to fill entire length of the string.
Compare above both equation,
⇒
sec

Therefore, the time taken to fill entire length 0f the string is 1.3 sec.
The correct answer is A. In the direction of applied force. This is because acceleration occurs n the direction of applied force according to Newtons second law of motion which states that the acceleration of a body is directly proportional to the applied force and takes place in the direction of force.
Answer:
(A). The work done by friction in crossing the patch is -637.98 J.
(B). The speed of skier is 10.57 m/s.
Explanation:
Given that,
Mass of skier = 62 kg
Speed = 6.5 m/s
Length = 3.50 m
Coefficient kinetic friction = 0.30
Height = 2.5 m
(A) we need to calculate the work done by friction in crossing the patch
Using formula of work done

Put the value into the formula


The work done by friction in crossing the patch is -637.98 J.
(B) we need to calculate the speed of skier
Using conservation of energy


Final potential energy is zero
So, 

Put the value into the formula



The speed of skier is 10.57 m/s.
Hence, (A).The work done by friction in crossing the patch is -637.98 J.
(B).The speed of skier is 10.57 m/s.
Answer:
Net force: 20 N to the right
mass of the bag: 20.489 kg
acceleration: 0.976 m/s^2
Explanation:
Since the normal force and the weight are equal in magnitude but opposite in direction, they add up to zero in the vertical direction. In the horizontal direction, the 195 N tension to the right minus the 175 force of friction to the left render a net force towards the right of magnitude:
195 N - 175 N = 20 N
So net force on the bag is 20 N to the right.
The mass of the bag can be found using the value of the weight force: 201 N:
mass = Weight/g = 201 / 9.81 = 20.489 kg
and the acceleration of the bag can be found as the net force divided by the mass we just found:
acceleration = 20 N / 20.489 kg = 0.976 m/s^2