Well an absorbtion line is a dark line in an absorption spectrum
thats all i can give you right now i didnt quite understand the question but hope it helps
Answer:
a. 2954g of FeS
b. 1143g of FeS
Explanation:
Based on the reaction:
8 Fe + S₈ → 8 FeS
<em>8 moles of Fe reacts with 1 mole of S₈ to produce 8 moles of FeS</em>
<em />
a. 4.2mol sulfur produce:
4.2mol S₈ × ( 8 mol FeS / 1 mol S₈) = <em>33.6mol FeS</em>. As molar mass of FeS is 87.92g/mol, mass is:
33.6mol FeS × ( 87.92g / 1 mol FeS) = <em>2954g of FeS</em>
<em />
b. 13mol Fe produce:
13mol Fe × ( 8 mol FeS / 8 mol Fe) = <em>13mol FeS</em>. In mass:
13 mol FeS × ( 87.92g / 1 mol FeS) = <em>1143g of FeS</em>
Answer:
Lead(II) sulfate
Explanation:
This looks like a double displacement reaction, in which the cations change partners with the anions.
The possible products are
Pb(NO₃)₂ (aq)+ Na₂SO₄(aq) ⟶PbSO₄(?) + 2NaNO₃(?)
To predict the product, we must use the solubility rules. Two important ones for this question are:
- Salts containing Group 1 elements are soluble.
- Most sulfates are soluble, but PbSO₄ is an important exception.
Thus, NaNO₃ is soluble and PbSO₄ is the precipitate.
Hi!
The correct options would be:
1. Cathode - <em>reduction</em>
The cathode is the negatively charged electrode, and so has an excess of electrons. Cations (positively charged ions) are attracted to the cathode, and gain electrons to acquire a neutral charge. The process in which a gain of electron occurs is called reduction.
2. Anode - <em>oxidation</em>
The opposite occurs at the anode which is positively charged and attracts negatively charged ions, anions. These anions lose their electrons at the anode to acquire a neutral charge, and the process involving loss of electrons is known as oxidation.
3. Salt Bridge - <em>ion transport </em>
Salt bridge is a physical connection between the the anodic and cathodic half cells in an electrochemical cell and is a pathway that facilitates the flow of ions back and forth these half cells. Salt bridge is involved in maintaining a neutral condition in the electrochemical cells, and its absence would result in the accumulation of positive charge in the anodic cell, and negative charge in the cathodic cell.
4. Wire - <em>electron transport </em>
Wires have a universal role of being a pathway for the transport of electrons in circuit. This role is also the same in the wires involved in an electrochemical cells where they are used to transport electrons from the anodic half cell, and this electron transport results in the generation of electricity in the internal circuit of the electrochemical cell.
Hope this helps!