Answer:
45.3°C
Explanation:
Heat gained = mass × specific heat × increase in temperature
q = mC (T − T₀)
Given C = 0.128 J/g/°C, m = 94.0 g, q = 305 J, and T₀ = 20.0°C:
305 J = (94.0 g) (0.128 J/g/°C) (T − 20.0°C)
T = 45.3°C
The message is the information being communicated from one place to another.
It used to be called the "intelligence". But as time went on, it became
harder to ignore the obvious fact that that was going too far, and the
label was changed to the more IQ-neutral "message".
The metric unit of force is Newton or N. The Newton unit is also equal
to kilogram per meter per second squared. The Newton name came from the late
physicist Isaac Newton. It is also based on the second law of motion.
Answer:
(1) Offer the right benefits
(2) Be transparent and open
Explanation:
There are two key strategies for retaining step are discussed below:
(1) Offer the right benefits: Benefits and perks can play a very good role in keeping employees happy, healthy and engaged. But benefits can go far beyond paid sick leaves and health coverage.
The company can give some financial awards to the employees which can help in exceeding performance and by this employees will stay in the company for a long period. Nearly 9 out of 10 companies will provide incentives and bonuses to the employees in coming next five years, according to the CTA.
(2) Be transparent and open: Creating open communication between the management and employees will help in the growth of the company as well as make the office atmosphere good. By this employees can share the ideas with the management and by these meetings, the employees can share their problems with management frankly will help employees to stay in the company for a longer period.
Answer:
k = 6,547 N / m
Explanation:
This laboratory experiment is a simple harmonic motion experiment, where the angular velocity of the oscillation is
w = √ (k / m)
angular velocity and rel period are related
w = 2π / T
substitution
T = 2π √(m / K)
in Experimental measurements give us the following data
m (g) A (cm) t (s) T (s)
100 6.5 7.8 0.78
150 5.5 9.8 0.98
200 6.0 10.9 1.09
250 3.5 12.4 1.24
we look for the period that is the time it takes to give a series of oscillations, the results are in the last column
T = t / 10
To find the spring constant we linearize the equation
T² = (4π²/K) m
therefore we see that if we make a graph of T² against the mass, we obtain a line, whose slope is
m ’= 4π² / k
where m’ is the slope
k = 4π² / m'
the equation of the line of the attached graph is
T² = 0.00603 m + 0.0183
therefore the slope
m ’= 0.00603 s²/g
we calculate
k = 4 π² / 0.00603
k = 6547 g / s²
we reduce the mass to the SI system
k = 6547 g / s² (1kg / 1000 g)
k = 6,547 kg / s² =
k = 6,547 N / m
let's reduce the uniqueness
[N / m] = [(kg m / s²) m] = [kg / s²]