<span>anwser will be
F = ma
where
F = force exerted on the bullet
m = mass of the bullet = 5 gm (given) = 0.005 kg.
a = acceleration of the bullet
Substituting appropriately,
F = 0.005a --- call this Equation 1
Next working equation is
Vf^2 - Vo^2 = 2as
where
Vf = velocity of the bullet as it leaves the muzzle = 326 m/sec (given)
Vo = initial velocity of bullet = 0
a = acceleration of bullet
s = length of the rifle's barrel
Substituting appropriately,
326^2 - 0 = 2(a)(0.83)
a = 64,022 m/sec^2
the anwser will be
Substituting this into Equation 1,
F = 0.005(64,022)
F =320.11 Newtons
Hope this helps. </span><span>
</span>
What will happen if the sample is the
Featured snippet from the web
When a sample of solid, liquid, or gas matter heats up, it expands. When matter gets hot, its particles gain kinetic energy. ... When matter cools down, its particles lose kinetic energy. The decreased kinetic energy lets the particles come closer together. The kinetic theory of matter can be used to explain how solids, liquids and gases are interchangeable as a result of increase or decrease in heat energy. ... If it is cooled the motion of the particles decreases as they lose energy.
To solve this problem it is necessary to apply the concepts related to Newton's second law, the definition of density and sum of forces in bodies.
From Newton's second law we understand that
Gravity at this case)
Where,
m = mass
a= acceleration
Also we know that
Part A) The buoyant force acting on the balloon is given as
As mass is equal to the density and Volume and acceleration equal to Gravity constant
PART B) The forces acting on the balloon would be given by the upper thrust force given by the fluid and its weight, then
PART C) The additional mass that can the balloon support in equilibrium is given as
Answer:
(a) 0.017m/s^2
(b) 17/100,000
(c) 0.17m, 0.558ft
Explanation:
(a) speed = 60mph = 60m/1h × 1h/3600s = 0.017m/s, time = 10s
Acceleration (a) = speed ÷ time = 0.017m/s ÷ 10s = 0.0017m/s^2
(b) g = 9.8m/s^2, a = 0.0017m/s^2
a/g = 0.0017/9.8 = 0.00017 = 17/100,000
(c) Distance = speed × time = 0.017m/s × 10s = 0.17m
Distance in foot = 0.17 × 3.2808ft = 0.558ft
Answer:
(a) The equivalent spring constant is 598.485 N/m
(b) The work done is 46.926 J
Explanation:
From Hooke's law of elasticity
K (spring constant) = F/e
F is the range of force exerted = 237 - 0 = 237 N
e is the extension of bowstring = 0.396 m
K = F/e = 237/0.396 = 598.485 N/m
Work done = 1/2 Fe = 1/2 × 237 × 0.396 = 46.926 J