Answer:
You take the light from a star, planet or galaxy and pass it through a spectroscope, which is a bit like a prism letting you split the light into its component colours. "It lets you see the chemicals being absorbed or emitted by the light source. From this you can work out all sorts of things," says Watson
Answer:
Unsaturated Solution: Less amount of salt in water, clear solution, no precipitation. Saturated Solution: The maximum amount of salt is dissolved in water, Colour of the solution slightly changes, but no precipitation. Supersaturated Solution: More salt is dissolved in water, Cloudy solution, precipitation is visible.
Answer:
see from this analysis, the apparent weight of the body is lower due to the push created by the air brujuleas
Explanation:
We will propose this exercise using Archimedes' principle, which establishes that the thrust on a body is equal to the volume of the desalted liquid.
B = ρ g V
The weight of a submerged body is the net force between the weight and the thrust
F_net = W - B
we can write the weight as a function of the density
ρ_body = m / V
m = ρ_body V
W = mg
W = ρ _body g V
we substitute
F_net= ( ρ_body - ρ _fluid) g V
In general this force is directed downwards, we can call this value the apparent weight of the body. This is the weight of the submerged body.
W_aparente = ( ρ_body - ρ _fluid) g V
If some air bubbles formed in this body, the net force of these bubbles is
F_net ’= #_bubbles ( ρ_fluido - ρ_air) g V’
this force is directed upwards
whereby the measured force is
F = W_aparente - F_air
As we can see from this analysis, the apparent weight of the body is lower due to the push created by the air brujuleas
Answer:
A) 580m
B) 0 m/s
C) 9.8m/s^2
D) downward
E) 10.87s
F) 106.62 m/s
Explanation:
A) The distance traveled by the rocket is calculated by using the following expression:

a: acceleration of the rocket = 2.90 m/s^2
t: time of the flight = 20.0 s

B) In the highest point the rocket has a velocity with magnitude zero v = 0m/s because there the rocket stops.
C) The engines of the rocket suddenly fails in the highest point. There, the acceleration of the rocket is due to the gravitational force, that is 9.8 m/s^2
D) The acceleration points downward
E) The time the rocket takes to return to the ground is given by:

10.87 seconds
F) The velocity just before the rocket arrives to the ground is:
