Given Information:
Length of wire = 132 cm = 1.32 m
Magnetic field = B = 1 T
Current = 2.2 A
Required Information:
(a) Torque = τ = ?
(b) Number of turns = N = ?
Answer:
(a) Torque = 0.305 N.m
(b) Number of turns = 1
Explanation:
(a) The current carrying circular loop of wire will experience a torque given by
τ = NIABsin(θ) eq. 1
Where N is the number of turns, I is the current in circular loop, A is the area of circular loop, B is the magnetic field and θ is angle between B and circular loop.
We know that area of circular loop is given by
A = πr²
where radius can be written as
r = L/2πN
So the area becomes
A = π(L/2πN)²
A = πL²/4π²N²
A = L²/4πN²
Substitute A into eq. 1
τ = NI(L²/4πN²)Bsin(θ)
τ = IL²Bsin(θ)/4πN
The maximum toque occurs when θ is 90°
τ = IL²Bsin(90)/4πN
τ = IL²B/4πN
torque will be maximum for N = 1
τ = (2.2*1.32²*1)/4π*1
τ = 0.305 N.m
(b) The required number of turns for maximum torque is
N = IL²B/4πτ
N = 2.2*1.32²*1)/4π*0.305
N = 1 turn
Answer:
i want to say flip the coins but im not really sure sry
Explanation:
Answer:
<em>a. 4.21 moles</em>
<em>b. 478.6 m/s</em>
<em>c. 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
Explanation:
Volume of container = 100.0 L
Temperature = 293 K
pressure = 1 atm = 1.01325 bar
number of moles n = ?
using the gas equation PV = nRT
n = PV/RT
R = 0.08206 L-atm-

Therefore,
n = (1.01325 x 100)/(0.08206 x 293)
n = 101.325/24.04 = <em>4.21 moles</em>
The equation for root mean square velocity is
Vrms = 
R = 8.314 J/mol-K
where M is the molar mass of oxygen gas = 31.9 g/mol = 0.0319 kg/mol
Vrms =
= <em>478.6 m/s</em>
<em>For Nitrogen in thermal equilibrium with the oxygen, the root mean square velocity of the nitrogen will be proportional to the root mean square velocity of the oxygen by the relationship</em>
= 
where
Voxy = root mean square velocity of oxygen = 478.6 m/s
Vnit = root mean square velocity of nitrogen = ?
Moxy = Molar mass of oxygen = 31.9 g/mol
Mnit = Molar mass of nitrogen = 14.00 g/mol
= 
= 0.66
Vnit = 0.66 x 478.6 = <em>315.876 m/s</em>
<em>the root mean square velocity of the oxygen gas is </em>
<em>478.6/315.876 = 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>