The Kelvin scale has no negatives on it.
Zero Kelvin is 'Absolute Zero', and nothing can get colder than that.
Answer:
Part a)

Part b)

Explanation:
Diameter of the circle = 24 ft
Diameter = 731.52 cm = 7.3152 m
now the horse complete 144 trips in one hour
so time to complete one trip is given as


now the speed of the horse is given as



Part a)
Now we know that the power is defined as rate of work done
it is given as




Part b)
Work done to climb up to 3 m height is given by

now we have




now we know that 1 HP = 746 Watt
so we have

Answer:
Sulfur (Has six valence electrons). It has maximum valency due to belonging to VI groups of the Periodic Table.
Explanation:
The electrons found in an element's outermost atomic shell are known as valence electrons.
Sulfur, which has an atomic number of 16, has an electrical configuration of 2, 8, 6, meaning it has six electrons in its outermost shell. As a result, its valence electrons will also be six.
However, in its natural condition, sulfur exists as the S8 molecule, which has the classic chair structure where each sulfur atom is covalently connected to two other sulfur atoms. In that sense, there will be 8 valence electrons.
Consequently, the answer will be 6 if you're asking about the "sulphur atom," but 8 if you're talking about sulfur in general.
Thank you ,
Eddie
<h2>Answer: Transpiration
</h2>
Vegetal transpiration is the loss of water in the form of vapor, in the plant through its different parts, especially its leaves.
In this process, soil water is absorbed by the roots of the plant and transported in liquid form to the leaves to be converted into water vapor, while a part is used in photosynthesis. That is why vegetal transpiration is considered a vital function in the photosynthesis process.
This is possible because the leaves have small pores that allow water to escape into the atmosphere in the form of vapor and absorb carbon dioxide. Then, most of the water in the plants is used in the process of transpiration and only a small percentage is retained in liquid state and used for its growth and storage.
Answer:
Therefore,
The speed of the wave on the longer wire is 95 m/s.
Explanation:
Given:
For Short wire, speed is

Let length of Short and Longer wire be
such that

To Find:
Speed on the longer wire
Solution:
The speed of a pulse or wave on a string under tension can be found with the equation,

Where,
= Tension on the wire
L = Length of Sting
m = mass of String
So here we have,
= same

Therefore,
......equation ( 1 )
And
.......equation ( 2 )
Dividing equation 1 by equation 2 and on Solving we get

Therefore,

Therefore,
The speed of the wave on the longer wire is 95 m/s.