A compound that binds to a receptor but does not activate the neuron is known as an Antagonist.
A receptor is a large protein molecule on a neuron that gets activated when a ligand binds to it such as a drug or hormone, or when electrical impulses pass through it.
An antagonist is a drug or hormone that binds to receptor, but instead of activating the receptor, it blocks or dampens the activation of the neuron. Antagonist drugs are used to interfere with the normal function or operation of a protein receptor.
Depending on the nature of the antagonist or the receptor it's bound to, the effects of antagonists may be permanent or temporary.
Learn more about antagonists here:
brainly.com/question/11985070
#SPJ4
3/5 times 5/3x = 8*3/5. X=24/5 simplified would be x= 4.8 L.
Answer:
The electrolyte carries positively charged lithium ions from the anode to the cathode and vice versa through the separator. The movement of the lithium ions creates free electrons in the anode which creates a charge at the positive current collectors
Answer:
Michaelis constant is known as km which is the substrate concentration that encourages the compound to work at half maximum velocity represented by Vmax/2. Michaelis constant is inversely related to the substrate and the affinity of the enzyme.
Induced fit model: The premise of the purported induced fit hypothesis, which expresses that the attachment or association of a substrate or some other atom to an enzyme causes an adjustment to the enzyme in order to fit or restrain its activity.
In substrate, analog Km or Michaelis constant will be high as the substrate will stay because of analogs inhibit activity.
In the transitional state, analog Km will be in the middle of the substrate and product analogs. Progress state analogs are synthetic mixes with a structure catalyzed reaction that looks like the progressing condition of a substrate atom in a compound enzyme.
In item simple thus Km is the least.
0.0013 M = product ananlog,
0.025 M=Transition state, and
0.0045 M = Substrate analog