Hey there!
To find the equation of a line, we first have to determine its slope knowing that parallel lines have the same slope.
Let the line that we are trying to determine its equation be
and the line that is parallel to
be
.
passes through the points (9 , 2) and (3 , -5) which means that we can find its slope using the slope formula:
⇒Subtitute the values :
![\implies \sf{m = \dfrac{\Delta y}{\Delta x} = \dfrac{\green{-5} - \orange{2}}{\red{ \: \: 3} - \blue{9 }} = \dfrac{ - 7}{ - 6} = \boxed{ \bold{\dfrac{7}{6} }}}](https://tex.z-dn.net/?f=%20%5Cimplies%20%5Csf%7Bm%20%3D%20%5Cdfrac%7B%5CDelta%20y%7D%7B%5CDelta%20x%7D%20%3D%20%5Cdfrac%7B%5Cgreen%7B-5%7D%20-%20%5Corange%7B2%7D%7D%7B%5Cred%7B%20%5C%3A%20%5C%3A%203%7D%20-%20%5Cblue%7B9%20%7D%7D%20%3D%20%5Cdfrac%7B%20-%207%7D%7B%20-%206%7D%20%3D%20%5Cboxed%7B%20%5Cbold%7B%5Cdfrac%7B7%7D%7B6%7D%20%7D%7D%7D)
.
Assuming that we want to get the equation in Slope-Intercept Form, let's substitute m = 7/6:
Slope-Intercept Form:
We know that the coordinates of the point (0 , -3) verify the equation since it is on the line
. Now, replace y with -3 and x with 0:
![\implies \sf{\overbrace{-3}^{y} = \dfrac{7}{8} \times \overbrace{0}^{x} + b} \\ \\ \implies \sf{-3 = 0 + b} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \implies \sf{\boxed{\bold{b = -3}} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:](https://tex.z-dn.net/?f=%20%5Cimplies%20%5Csf%7B%5Coverbrace%7B-3%7D%5E%7By%7D%20%3D%20%5Cdfrac%7B7%7D%7B8%7D%20%5Ctimes%20%5Coverbrace%7B0%7D%5E%7Bx%7D%20%2B%20b%7D%20%5C%5C%20%5C%5C%20%5Cimplies%20%5Csf%7B-3%20%3D%200%20%2B%20b%7D%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%5C%20%5C%5C%20%5Cimplies%20%5Csf%7B%5Cboxed%7B%5Cbold%7Bb%20%3D%20-3%7D%7D%20%7D%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20)
Therefore, the equation of the line
is ![\green{\boxed{\red{\bold{\sf{y = \dfrac{7}{6}x - 3}}}}}](https://tex.z-dn.net/?f=%20%5Cgreen%7B%5Cboxed%7B%5Cred%7B%5Cbold%7B%5Csf%7By%20%3D%20%5Cdfrac%7B7%7D%7B6%7Dx%20-%203%7D%7D%7D%7D%7D%20)
▪️Learn more about finding the equation of a line that is parallel to another one here:
↣brainly.com/question/27497166
Solution:
Principal =P= $ 7,500
Option A→(Simple interest)
Rate of interest= R=4%
Time(
)=4 years
Time(
)=6 years
Amount= Principal + Interest(Simple or compound interest)
Formula for Simple interest
![S.I=\frac{P\times R\times T}{100}](https://tex.z-dn.net/?f=S.I%3D%5Cfrac%7BP%5Ctimes%20R%5Ctimes%20T%7D%7B100%7D)
![S.I_{1}=\frac{7500 *4*4}{100}=1200\\\\ S.I_{2}=\frac{7500 *4*6}{100}=1800](https://tex.z-dn.net/?f=S.I_%7B1%7D%3D%5Cfrac%7B7500%20%2A4%2A4%7D%7B100%7D%3D1200%5C%5C%5C%5C%20S.I_%7B2%7D%3D%5Cfrac%7B7500%20%2A4%2A6%7D%7B100%7D%3D1800)
Total amount after 4 years when interest is simple= 7500 +1200= $ 8700
Total amount after 6 years when interest is simple= 7500 +1800= $ 9300
Option B
Formula for amount(A) when interest is 3.15% compounded annually.
![A=P*(1+\frac{R}{100})^t](https://tex.z-dn.net/?f=A%3DP%2A%281%2B%5Cfrac%7BR%7D%7B100%7D%29%5Et)
![A_{4}=7500*(1+\frac{3.15}{100})^4\\\\ A_{4}=7500*(\frac{103.15}{100})^4\\\\ A_{4}=7500*(1.0315)^4\\\\ A_{4}=7500*1.1320\\\\ A_{4}=8490.60](https://tex.z-dn.net/?f=A_%7B4%7D%3D7500%2A%281%2B%5Cfrac%7B3.15%7D%7B100%7D%29%5E4%5C%5C%5C%5C%20A_%7B4%7D%3D7500%2A%28%5Cfrac%7B103.15%7D%7B100%7D%29%5E4%5C%5C%5C%5C%20A_%7B4%7D%3D7500%2A%281.0315%29%5E4%5C%5C%5C%5C%20A_%7B4%7D%3D7500%2A1.1320%5C%5C%5C%5C%20A_%7B4%7D%3D8490.60)
![A_{6}=7500*(1+\frac{3.15}{100})^6\\\\ A_{6}=7500*(\frac{103.15}{100})^6\\\\ A_{6}=7500*(1.0315)^6\\\\ A_{6}=7500*1.2045\\\\ A_{6}=9033.9286](https://tex.z-dn.net/?f=A_%7B6%7D%3D7500%2A%281%2B%5Cfrac%7B3.15%7D%7B100%7D%29%5E6%5C%5C%5C%5C%20A_%7B6%7D%3D7500%2A%28%5Cfrac%7B103.15%7D%7B100%7D%29%5E6%5C%5C%5C%5C%20A_%7B6%7D%3D7500%2A%281.0315%29%5E6%5C%5C%5C%5C%20A_%7B6%7D%3D7500%2A1.2045%5C%5C%5C%5C%20A_%7B6%7D%3D9033.9286)
Total amount after 4 years when interest is compounded annually=$ 8491 (approx)
Total amount after 6 years when interest is compounded annually=$ 9034(approx)
Answer: 4 Cups
I think in order to solve this, you would need to add up the fractions that they used. So it would be,
Transform the Expressions
Calculate the sum
Reduce
Transform the Expression
Calculate
Reduce the Fraction
![4](https://tex.z-dn.net/?f=4)
Please mark brainliest if this helped you :)
1/6^4= 1/1296
I think this is the answer