Answer:
Work done, W = 5534.53 J
Explanation:
It is given that,
Force acting on the piano, F = 6157 N
It is pushed up a distance of 2.41 m friction less plank.
Let W is the work done in sliding the piano up the plank at a slow constant rate. It is given by :

Since,
(in vertical direction)

W = 5534.53 J
So, the work done in sliding the piano up the plank is 5534.53 J. Hence, this is the required solution.
Ez the answer to your question would be
(-4) cecause I am super smart ? 931
In option A there are two resistors in which two terminals of resistors are connected with the terminals of battery so here they are connected in parallel.
In option B all resistors and battery is connected in a single loop so it is a series combination of all.
In option C all three resistors are connected by their terminals to a single battery so here all three resistor are in parallel with the battery.
In option D only one resistor is connected in series with a battery as one single loop is there.
So in the above all cases two resistors are in parallel with battery in option A
Answer:
m = 4.4 × 10³ kg
Explanation:
Given that:
The total yearly energy is 4.0 × 10²⁰ J
The amount of mass that provides this energy can be determined by using the formula:
E = mc²
where;
c = speed of light in free space = (3 × 10⁸)
4.0 × 10²⁰ = m × (3 × 10⁸)²

m = 4.4 × 10³ kg