Answer:
kinetic energy is the answer
Explanation:
kinetic energy is movement
Answer:
D. 550 Hz
Explanation:
Frequency for string is given by

where v is the speed of the wave, L = m is the length
Frequency is inversely proportional to the Length of the string

from above relation we can write

The newly shortened string has 4/5 the length of the full string .i,e

Hence option D is correct
Answer:
0.64 J/g°C
Explanation:
Using the formula;
Q = m × c × ∆T
Where;
Q = amount of heat
m = mass (g)
c = specific heat capacity
∆T = change in temperature (°C)
In this case:
Q (water) = - Q (metal)
mc∆T (water) = - mc∆T (metal)
According to the information in this question,
For water; m = 100g, c = 4.18J/g°C, ∆T = (25°C - 20°C)
For metal; m = 50g, c =?, ∆T = (25°C - 90°C)
mc∆T (water) = - mc∆T (metal)
100 × 4.18 × (25°C - 20°C) = - {50 × c × (25°C - 90°C)}
100 × 4.18 × 5 = - {50 × c × -65}
2090 = -{-3250c}
2090 = 3250c
c = 2090/3250
c = 0.643
c = 0.64J/g°C
Answer:
YES
Explanation:
An echo may be defined as a sound which is repeated because of the sound waves that are produced are reflected back after striking a surface. Sound waves can smoothly bounce off the hard objects in the same manner as a rubber ball bounces back the ground.
When a sound wave strikes a hard surface, the sound waves gets reflected back and bounces back to the observer and produces an echo. If the sound waves strikes a soft surface it absorbs the sound.
Although the direction of a sound changes but the echo sounds in the same way as the original sound.